Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham Research Online
You are in:

Assembly models for Papovaviridae based on tiling theory.

Keef, T. and Taormina, A. and Twarock, R. (2005) 'Assembly models for Papovaviridae based on tiling theory.', Physical biology., 2 (3). pp. 175-188.

Abstract

A vital constituent of a virus is its protein shell, called the viral capsid, that encapsulates and hence provides protection for the viral genome. Assembly models are developed for viral capsids built from protein building blocks that can assume different local bonding structures in the capsid. This situation occurs, for example, for viruses in the family of Papovaviridae, which are linked to cancer and are hence of particular interest for the health sector. More specifically, the viral capsids of the (pseudo-) T = 7 particles in this family consist of pentamers that exhibit two different types of bonding structures. While this scenario cannot be described mathematically in terms of Caspar–Klug theory (Caspar D L D and Klug A 1962 Cold Spring Harbor Symp. Quant. Biol. 27 1), it can be modelled via tiling theory (Twarock R 2004 J. Theor. Biol. 226 477). The latter is used to encode the local bonding environment of the building blocks in a combinatorial structure, called the assembly tree, which is a basic ingredient in the derivation of assembly models for Papovaviridae along the lines of the equilibrium approach of Zlotnick (Zlotnick A 1994 J. Mol. Biol. 241 59). A phase space formalism is introduced to characterize the changes in the assembly pathways and intermediates triggered by the variations in the association energies characterizing the bonds between the building blocks in the capsid. Furthermore, the assembly pathways and concentrations of the statistically dominant assembly intermediates are determined. The example of Simian virus 40 is discussed in detail.

Item Type:Article
Full text:(AM) Accepted Manuscript
Download PDF
(2254Kb)
Status:Peer-reviewed
Publisher Web site:http://dx.doi.org/10.1088/1478-3975/2/3/005
Publisher statement:© 2005 IOP Publishing
Date accepted:No date available
Date deposited:17 April 2013
Date of first online publication:September 2005
Date first made open access:No date available

Save or Share this output

Export:
Export
Look up in GoogleScholar