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Sympathetic cooling of fluorine atoms with ultracold atomic hydrogen

Maykel L. González-Martı́nez* and Jeremy M. Hutson†

Joint Quantum Centre (JQC) Durham/Newcastle, Department of Chemistry, Durham University,
South Road, Durham DH1 3LE, United Kingdom

(Received 13 July 2013; published 20 November 2013)

We consider the prospect of using ultracold hydrogen atoms for sympathetic cooling of fluorine atoms to
microkelvin temperatures. We carry out quantum-mechanical calculations on collisions between cold F and H
atoms in magnetically trappable states and show that the ratio of elastic to inelastic cross sections remains high
across a wide range of temperatures and magnetic fields. For F atoms initially in the spin-stretched state (2P3/2,
f = mf = +2), sympathetic cooling appears likely to succeed from starting temperatures around 1 K or even
higher. This occurs because inelastic collisions are suppressed by p-wave and d-wave barriers that are 600 mK
and 3.2 K high, respectively. In combination with recent results on H + NH and H + OH collisions [M. L.
González-Martı́nez and J. M. Hutson, Phys. Rev. Lett. 111, 203004 (2013)], this establishes ultracold H atoms
as a very promising and versatile coolant for atoms and molecules that cannot be laser-cooled.

DOI: 10.1103/PhysRevA.88.053420 PACS number(s): 37.10.De, 34.50.Cx

I. INTRODUCTION

Reaching the cold (T < 1 K) and ultracold (T < 1 mK)
regimes has triggered the revival of atomic physics. In less than
three decades, it has led to the creation of Bose-Einstein con-
densates (BECs) [1–3] and Fermi degenerate gases [4,5], atom
lasers [6], quantized vortices [7], solitons [8,9], and optical
lattices [10]. It has had a significant impact in high-precision
measurement and in the study of collective phenomena such as
superfluidity and superconductivity [11–13]. In addition, it has
opened up the possibility of full control of atomic interactions
and scattering properties using external fields [14].

The atoms that can currently be cooled to the ultracold
regime form only a small part of the periodic table. They
include alkali metals, some alkaline earths, and relatively
exotic species such as Yb, Cr, Dy, Er and metastable He,
all of which are amenable to laser Doppler cooling. However,
there are many other atoms that cannot yet be cooled to such
temperatures, including chemically important elements such
as carbon, nitrogen, oxygen and the halogens. Halogen atoms
are particularly interesting; they are reactive species that are
often used as prototypes in the study of chemical reaction
dynamics, and ultracold halogen atoms would offer fascinating
possibilities for exploring chemical reactions in the cold and
ultracold regime [15,16].

Laser cooling of halogen atoms is not currently possible,
since the UV lasers needed to excite their lowest one-photon
transitions are not available. However, Doherty et al. [17] have
recently used the PhotoStop approach [18] to trap Br atoms
below 1 K at number densities up to 108 cm−3. In addition,
halogen atoms may be amenable to Zeeman deceleration [19].
However, such techniques by themselves are unlikely to reach
the true ultracold regime below 1 mK and a second-stage
cooling method is needed.

*Present address: Laboratoire Aimé Cotton, CNRS, Université
Paris-Sud XI, ENS Cachan, Bât. 505, Campus d’Orsay, 91405 Orsay,
France; maykel.gonzalez-martinez@u-psud.fr
†J.M.Hutson@durham.ac.uk

We have recently shown [20] that sympathetic cooling using
spin-polarized ultracold atomic hydrogen offers a promising
way to cool prototype molecules to the ultracold regime. For
NH, our calculations suggested that sympathetic cooling with
H atoms may be successful from a starting temperature of
1 K or even higher; this contrasts with sympathetic cooling
with heavier atoms such as Li [21] and Mg [22,23], which is
predicted to succeed only if the molecules can be precooled
to 10 or 20 mK. The general problem of sympathetic cooling
for species in electric [24] or magnetic traps [25] is that static
traps can confine species only when they are in low-field-
seeking states, and these states are never the lowest state in
the applied field. Collisions that transfer atoms or molecules
to the lower states release kinetic energy and usually eject
both collision partners from the trap. The key quantity that
determines the feasibility of sympathetic cooling is the ratio γ

between the cross section for elastic collisions (which produce
thermalization) and that for inelastic collisions (which cause
trap loss). A common rule of thumb is that, for cooling to be
successful, this ratio needs to be at least 100 [26].

In this paper we explore the use of sympathetic cooling with
ultracold hydrogen atoms for fluorine atoms in their ground
state, 2P3/2. We have modified the MOLSCAT package [27,28]
to carry out quantum collision calculations between H and F
atoms in a magnetic field, including hyperfine interactions for
both H and F. The H + F system is simple enough that we
can fully include all the potential curves that can contribute,
including the deeply bound 1�+ ground state of HF, and also
take full account of the hyperfine structure.

II. THEORY

A. Collision Hamiltonian

In this section we describe the general theory for collisions
between an atom A in a 2s1+1S state and an atom B in a
state with orbital angular momentum l2 and electron spin
s2 in the presence of an external magnetic field. We follow
the convention of using lowercase letters for operators and
quantum numbers for the individual atoms and capital letters
for those of the collision complex as a whole. The vector R
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joins the centers of mass of the atoms, while ur represents a
unit vector conjugate to the orbital angular momentum of atom
B. Where necessary, subscripts 1 and 2 refer to atoms A and
B, respectively.

We solve the time-independent Schrödinger equation for
the scattering wave function � at energy E, Ĥ� = E�. The
collision Hamiltonian may be written

Ĥ = − h̄2

2μ
R−1 d2

dR2
R + h̄2L̂2

2μR2
+ Ĥ1 + Ĥ2 + Ĥ12, (1)

where R is the internuclear distance, L̂ is the space-fixed
operator for the end-over-end rotation, and μ is the reduced
mass for the collision. Ĥ1 and Ĥ2 describe the separated
atoms, while Ĥ12 describes the interaction between them, with
contributions that include both the electronic potential V̂ and
the dipolar interaction Ĥdip between the magnetic moments of
the two atoms.

In the general case of nonzero electronic and nuclear spins,
the Hamiltonian for an isolated atom B in a state 2s2+1l2
can be decomposed into spin-orbit, hyperfine, and Zeeman
contributions:

Ĥ2 = Ĥso + Ĥhf,2 + ĤZ,2. (2)

In Russell-Saunders coupling, the spin-orbit term may be
written Ĥso = aso l̂2 · ŝ2, where aso is the spin-orbit constant,
and l̂2 and ŝ2 are the electronic orbital angular momentum
and spin operators. Corrections to this are required to handle
deviations from Russell-Saunders coupling [29].

The leading terms in Ĥhf,2 are the magnetic dipole and
electric quadrupole contributions. The magnetic dipole term
may be written aj ı̂2 · ĵ2, where ĵ2 = l̂2 + ŝ2 and the aj are the
associated coupling constants [30,31]. The quadrupolar term
(which exists only if i2 � 1, so is not present for 1H or 19F)
may be written ĤQ = 2bj ı̂2 · ĵ2(2ı̂2 · ĵ2 + 1) [30,31].

Finally, the Zeeman term arises from the interaction of
the atomic magnetic moment with the external magnetic
field B. It may be written ĤZ,2 = −μ̂2 · B, where μ̂2 =
−g′

LμB l̂2 − gSμBŝ2 + gi2μN ı̂2 [32], g′
L ≈ 1, gS ≈ 2, and gi2

are the “corrected” orbital [33], electron, and nuclear g factors,
and μB and μN are the Bohr and nuclear magnetons.

The Hamiltonian for an isolated atom A in a 2s1+1S state
is obtained from that for B by setting l1 = 0 and contains
hyperfine and Zeeman contributions only, so that Ĥ1 =
Ĥhf,1 + ĤZ,1. Ĥhf,1 reduces to the Fermi contact interaction
ĤF,1 = bF,1ŝ1 · ı̂1, with bF,1 an effective coupling constant
and ŝ1 and ı̂1 the electronic and nuclear spin operators. The
Zeeman term is the same as that for atom B, except that
μ̂1 = −gSμBŝ1 + gi1μN ı̂1.

The general expansion for the electronic interaction poten-
tial between two atoms with arbitrary angular momentum has
been derived by Krems, Groenenboom, and Dalgarno [34].
First, since the operator for the total interaction potential
V̂ (R,ur ) is diagonal in the total electronic spin S (Ŝ = ŝ1 + ŝ2)
and its space-fixed projection MS , it can be decomposed into
contributions V̂ S(R,ur ),

V̂ (R,ur ) =
s1+s2∑

S=|s1−s2|

S∑
MS=−S

|SMS〉〈SMS | V̂ S(R,ur ). (3)

For interaction of an S-state atom A with an l2-state atom B,
there are l2 + 1 molecular electronic states for each total spin S

with projections |�| = 0, . . . ,l2 onto the internuclear axis. In
the approximation that l2 is conserved at all values of R, these
potentials can be represented by an expansion in Legendre
polynomials,

V̂ S(R,ur ) =
∑

k

V̂ S
k (R)Pk(uR · ur ), (4)

where k = 0,2, . . . ,2l2, uR ≡ (θ,φ) is a unit vector in the
direction of R,

V̂ S
k (R) = (2k + 1)

(2l2 + 1)

l2∑
�=−l2

〈l2�k0|l2�〉
〈l20k0|l20〉 V̂ S

�(R), (5)

and 〈j1m1j2m2|jm〉 is a Clebsch-Gordan coefficient. For the
specific case where atom B is a halogen, l2 = 1, and Eq. (5)
reduces to one isotropic (k = 0) and one anisotropic (k = 2)
component for each total spin S:

V̂ S
0 (R) = 1

3

[
V̂ S

� (R) + 2V̂ S
	(R)

]
, (6)

V̂ S
2 (R) = 5

3

[
V̂ S

� (R) − V̂ S
	(R)

]
. (7)

The direct dipolar interaction between the magnetic moments
of the two atoms may be written [35]

Ĥdip = −
√

6(μ0/4π )R−3T2(μ̂1,μ̂2) · T2(uR), (8)

where μ0 is the magnetic permeability of free space and T k

represents a spherical tensor of rank k.
In the present work, we assume that all the atomic coupling

constants are independent of the internuclear distance R.
Any variation of these constants could be introduced as
an additional term in the interaction operator Ĥ12, as has
been done, for example, for the R dependence of hyperfine
interactions for the interactions between alkali-metal atoms
and closed-shell atoms [36,37]. Such effects might include, for
example, the distance dependence of the spin-orbit coupling
constant aso or a nuclear quadrupole interaction in atom A (if
i1 � 1) as a result of the breakdown of its spherical symmetry
when the two atoms approach one another.

B. Coupled-channel equations

We solve the quantum-mechanical scattering problem using
the coupled-channel method. The total wave function is first
expanded in a set of N conveniently chosen basis functions |a〉,

�(R,ξ ) = R−1
∑

a

χa(R)|a〉, (9)

where ξ is a collective variable including all coordinates
except R, and a is the set of quantum numbers that label
the basis functions. Each different combination of quantum
numbers a defines a channel. A set of coupled differential
equations for the channel functions χa(R) is then obtained by
substituting �(R,ξ ) into the time-independent Schrödinger
equation to yield

d2χa

dR2
=

∑
a′

(Waa′ − εδaa′ ) χa′ , (10)

053420-2
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where δij is the Kronecker delta, ε = 2μE/h̄2 is a scaled
energy, and

Waa′ (R) = 2μ

h̄2 〈a|Ĥ1 + Ĥ2 + Ĥ12 + h̄2L̂2

2μR2
|a′〉. (11)

The coupled equations (10) are solved by propagating a
complete set of independent solution vectors from Rmin,
deep in the inner classically forbidden region, to Rmax, large
enough that the effects of the interaction have died off.

C. Basis sets and matrix elements

The basis functions may be written |a〉 ≡ |α1〉|α2〉|LML〉,
where |α1〉 and |α2〉 are basis functions for atoms A and B, and
MX (or mX) denotes the projection of the angular momentum
X along the axis of the magnetic field. We use two different
basis sets, with common |α1〉 = |i1mi1〉|s1ms1〉. The difference
occurs in the description of atom B, for which we used both
a totally uncoupled basis set |i2mi2〉|l2ml2〉|s2ms2〉 and an “ls-
coupled” basis set |i2mi2〉|(l2s2)j2mj2〉. We have verified that
scattering calculations in these two basis sets give identical
results.

In a static magnetic field, the only conserved quan-
tities are the projection Mtot of the total angular mo-
mentum and the total parity P of the system, which
are explicitly Mtot = mi1 + ms1 + mi2 + ml2 + ms2 + ML =
mi1 + ms1 + mi2 + mj2 + ML and P = p1p2(−1)L, where
p1 and p2 are the parities of atoms A and B. The coupled
equations are therefore constructed and solved separately for
each combination of Mtot and P .

Constructing the coupled equations (10) requires evaluating
the matrix elements of all the terms in Ĥ1, Ĥ2, and Ĥ12 in the
chosen basis set. The resulting matrix elements are given in the
Appendix. The parameters for the 19F hyperfine Hamiltonian
were taken from Ref. [31].

D. Interaction potentials

The interaction between the H(2S) and the F(2P ) atoms gives
rise to four electronic states, shown in Fig. 1. The X1�+ state
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FIG. 1. (Color online) Ground (X1�+) and excited (A1	, 13�+,
a3	) electronic states of H + F. Inset: The relatively shallow van der
Waals wells for the excited states.

is strongly chemically bound, with a well about 50 000 cm−1

(over 6 eV) deep near R = 0.9 Å. By contrast, the A1	, 13�+,
and a3	 excited states are weakly bound, with long-range van
der Waals wells between 8 and 15 cm−1 deep at about 3.5 Å.

The potential curve for the ground state of HF has been
determined very accurately by Coxon and Hajigeorgiou [38]
from a global least-squares fit of all the spectroscopic data
available in the literature. However, this curve is not strictly
the curve for the pure 1�+ state: close to dissociation, it should
be interpreted as the lowest eigenvalue of a fixed-R electronic
Hamiltonian, including spin-orbit coupling, which correlates
with the 2P3/2 ground state of F. We have therefore used curves
for the three excited states obtained by Brown and Balint-Kurti
[39] from multireference configuration interaction (MRCI)
calculations and determined the 1�+ potential so that the
lowest eigenvalue of the � = 0 matrix [40],(

V diab
1 − 1

2aso
1√
2
aso

1√
2
aso V diab

2

)
, (12)

matches the ground-state curve of Coxon and Hajigeorgiou
[38]. Here, 1 ≡ 3	0,e and 2 ≡ 1�0,e as shown in Fig. 1. In this
calculation, we neglected the R dependence of the spin-orbit
Hamiltonian. The resulting points for all four curves were
inter- and extrapolated using the reproducing kernel Hilbert
space method [41–43], with the C6, C8, and C10 dispersion
coefficients constrained to match the scaled values of Ref. [44].

E. Numerical methods

The coupled equations (10) are constructed in the primitive
basis sets described in Sec. II C. The basis set includes partial
waves up to Lmax = 8, which is well converged. There are
typically 100 to 200 channels, depending on the values of Mtot

and parity.
The coupled equations are solved using the hybrid log-

derivative Airy method of Alexander and Manolopoulos [45],
using a fixed-step-size log-derivative propagator for 0.5 �
R � 25 Å, with �R = 0.005 Å, and a variable-step-size
Airy propagator for 25 � R � 10 000 Å. The wave function
log-derivative matrix is transformed at Rmax = 10 000 Å into
a basis set in which Ĥ1, Ĥ2, and L̂2 are diagonal [28], and
the transformed channel functions are matched to the standard
scattering boundary conditions [46]. This gives the S matrix
from which the state-to-state cross sections and scattering
lengths are calculated.

III. RESULTS AND DISCUSSION

A. Atomic hyperfine and Zeeman levels

Figure 2(a) shows the energy levels of the H atom in a
magnetic field. For sympathetic cooling, we consider collisions
with atoms that are magnetically trapped in the doubly
polarized state |2S1/2, msH = + 1

2 , miH = + 1
2 〉, designated Hd

and shown as the solid blue line in Fig. 2(a).
Figure 2(b) shows the corresponding energy levels of the

19F atom. We have carried out calculations on H + F collisions
for the two low-field-seeking initial states shown as solid
blue lines. These correspond to |2P3/2, fF = 1, mf F = +1〉
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FIG. 2. (Color online) Magnetic-field dependence of the energy
levels for (a) H(2S) and (b) 19F(2P o

3/2). Solid (dashed) lines correspond
to the inclusion (exclusion) of hyperfine terms. Scattering calculations
were carried out for the magnetically trappable states highlighted in
blue.

and |2P3/2, fF = 2, mf F = +2〉 and are designated Fc and Fh,
respectively.

Hydrogen atoms cannot yet be laser-cooled, because the
laser required to drive the 2 2P ← 1 2S transition (Lyman α)
is not available. Nevertheless, magnetically trapped hydrogen
atoms in state Hd have been produced at temperatures of 40 to
100 mK and densities up to 3 × 1014 cm−3 by purely cryogenic
methods [47,48] and then evaporatively cooled to produce a
BEC of 109 atoms at a temperature of around 50 μK and
densities between 1014 and 5 × 1015 cm−3 [49]. In addition,
Zeeman deceleration and magnetic trapping of hydrogen
have recently been demonstrated [50–53], although at higher
temperatures and lower number densities. For sympathetic
cooling purposes a BEC is unnecessary, but the high densities
and large cloud sizes achievable with cryogenic methods are
very valuable.

B. Elastic and inelastic collisions

Figure 3(a) shows the elastic and total inelastic cross
sections as a function of the collision energy for collisions
between hydrogen atoms in state Hd and fluorine atoms in
state Fh. These collisions are spin-stretched, meaning that both
atoms have their maximum values of all projection quantum
numbers. Because of this, collisions that change a projection
quantum number on either atom must necessarily change ML,
and this means that s-wave collisions (incoming L = 0) must
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FIG. 3. (Color online) Elastic and total inelastic cross sections
as a function of collision energy, for B = 1 and 1000 G. Results are
shown for collisions of spin-stretched H (Hd ) with (a) spin-stretched F
(Fh) and (b) Fc. The initial states are highlighted in Fig. 2. Solid lines
include s-, p-, and d-wave contributions, dashed lines include s- and
p-wave contributions and dotted lines are the s-wave cross sections.
Vertical lines show the heights of the p- and d-wave centrifugal
barriers.

have outgoing L � 2 [54,55]. The s-wave inelastic collisions
are therefore suppressed by an L = 2 centrifugal barrier in
the outgoing channel, which, for H + F, collisions is 3.2 K
high. For p-wave collisions, with incoming L = 1, the barrier
is lower (614 mK), but in this case there is a barrier in both
the incoming and the outgoing channels. Figure 3(a) shows
that the elastic cross section is dominated by s-wave collisions
at energies up to about 400 mK. The p-wave contributions to
inelastic cross sections are significant above about 1 mK and
d-wave collisions contribute significantly above about 3 K.
The low-energy inelastic cross sections are larger at 1000 G
than at 1 G because the kinetic energy release for inelastic
collisions increases with the field and helps to overcome the
centrifugal barrier in the outgoing channel. Nevertheless, the
ratio of elastic to inelastic cross sections remains above 100
for both fields at energies up to 5 K, except in the region of a
p-wave shape resonance in the incoming channel around 1 K.

Figure 4(a) shows state-to-state cross sections for the most
important product channels in Hd + Fh collisions, which help
us to understand the collision mechanisms. For spin-stretched
collisions, the dominant channels are those in which the F state
changes and the H atom is a spectator. This suggests that the
dominant coupling is the anisotropy of the triplet potentials
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Results are shown for collisions of spin-stretched H (Hd ) with (a)
spin-stretched F (Fh) and (b) Fc. The line for Hd + Fg is hidden
underneath that for Hc + Fh in the steep region near their thresholds.

V 1
2 (R) [Eq. (7)]. This term can change mf F by up to 2, and

formation of Fb and Fc is preferred over formation of Ff and
Fg because the larger kinetic energy release for the former pair
helps reduce centrifugal suppression.

Figure 3(b) shows elastic and total inelastic cross sections
for Hd + Fc collisions, with the F atom initially in a magnet-
ically trappable state that correlates with fF = 1; this state is
not spin-stretched and has mf F = +1. At 1000 G the dominant
channels at low collision energy are those in which the state of
the H atom does not change, as shown in Fig. 4(b). The inelastic
cross sections are actually smaller than for spin-stretched
collisions at a low energy, because the kinetic energy releases
are lower and there is more centrifugal suppression. At 1 G the
centrifugal suppression is so strong that a different mechanism
takes over: the weak dipolar interaction can drive long-range
inelastic collisions that take place outside the centrifugal
barrier [56,57], producing Ha and Fb or Fc; Fig. 4(b) shows
that this is the dominant low-energy mechanism at 1 G.

There are also narrow resonances for Hd + Fc collisions,
between 20 and 30 mK at 1 G and around 3 and 30 mK at
1000 G, which produce peaks in the inelastic cross sections.
These are due to resonances in the singlet states and their
positions are very sensitive to changes in the singlet potentials.
However, they are narrow enough to have little effect on
sympathetic cooling.

At higher energies, additional inelastic channels open.
Collisions to form Ha + Fh are possible at collision energies
above 60 mK at 1 G and above 24 mK at 1000 G. There
are also channels forming Hc + Fh and Hd + Fg that open
near 100 mK for both fields. All these collisions conserve
mf F + mf H, so are not centrifugally suppressed and dominate
the inelasticity above their threshold energies. They are driven
by the difference between the singlet and the triplet potentials,
and we refer to them as “spin-exchange” collisions by analogy
with the corresponding process in collisions between alkali-
metal atoms. These collisions and their consequences are
considered in more detail below. However, we note here that
they do not lead to trap loss for F atoms and will not necessarily
prevent sympathetic cooling; the dot-dashed lines in Fig. 4(b)
show the inelastic cross sections obtained if the spin-exchange
collisions are excluded.

Figure 5 shows the results for Hd + Fh and Hd + Fc

collisions with various approximations. First, the dotted
(green) lines show the results of excluding the dipolar
interaction Hdip between the atoms; it may be seen that this
is a good approximation for spin-stretched collisions and,
also, for non-spin-stretched collisions at 1000 G, where the
kinetic energy release is substantial and collisions that change
only mf F dominate (driven by the potential anisotropy and
subject to centrifugal suppression). However, it dramatically
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FIG. 5. (Color online) Elastic and total inelastic cross sections
as a function of collision energy, for B = 1 and 1000 G, from both
full coupled-channel calculations and a variety of approximations.
Results are shown for collisions of spin-stretched H (Hd ) with
(a) spin-stretched F (Fh) and (b) Fc.
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underestimates the low-energy inelastic cross sections at 1 G,
which are driven by the dipolar interaction as discussed above.

The long-dashed (gray) lines in Fig. 5 show the effect of
neglecting hyperfine interactions (which produces the same
state for Fh and Fc, with mjF = +3/2, so the hyperfine-
free lines are the same in both panels). This approximation
significantly reduces the inelastic cross sections: the difference
arises from the additional kinetic energy released in the
presence of hyperfine interactions. This effect is similar to
the one that we have identified and discussed in Mg + NH
collisions [23].

Finally, the short-dashed (purple) lines in Fig. 5 show the
effect of setting the singlet potentials equal to the correspond-
ing triplet potentials. This approximation is not necessary for
H + F collisions, but for atom + molecule collisions such as
H + NH and H + OH [20] it is difficult or impossible to
converge scattering calculations in which the deep low-spin
surfaces (corresponding to NH2 or H2O) are included with their
full depth. H + F allows this approximation to be tested. It may
be seen that including the full singlet curves has only a fairly
small effect (20% to 30%) for spin-stretched collisions; this is
expected, because pairs of spin-stretched atoms or molecules
interact entirely on the highest-spin surface, and lower-spin
surfaces can contribute only after one of the spin projections
has changed. For the non-spin-stretched collisions shown in
Fig. 5(b), the effect is small at 1 G, except near the narrow
singlet resonances, but considerably larger (up to a factor
of 6) at 1000 G below 40 mK. In addition, neglecting the
difference between the singlet and the triplet curves prevents
the spin-exchange excitation collisions that become important
at higher collision energies.

C. Sympathetic cooling

Using a hard-sphere model, de Carvalho et al. [26] found
that the temperature difference between the warm species and
the coolant species after k collisions is given by

T k
2 − T1

T 0
2 − T1

= exp

(
− k

κ

)
, (13)

where the number of collisions κ required to reduce the
temperature difference by a factor of e is

κ = (m1 + m2)2

2m1m2
= 1

2

(
1 + m1

m2

) (
1 + m2

m1

)
(14)

and thus depends solely on the mass ratio. In our case,
κ ≈ 10.5.

Figure 6(a) shows the ratio γ of elastic to inelastic cross
sections, as a function of the collision energy and magnetic
field, for 19F initially in state Fh. The diagonal black line shows
the field at which the Zeeman energy is 6kBT , so that 99.9%
of the F atoms at temperature T sample fields below the line.
It may be seen that γ exceeds 1000, and sympathetic cooling
of 19F atoms is thus predicted to be successful, for almost all
fields and energies up to 5 K. The ratio decreases to around 40
near 1 K, due to the p-wave shape resonance discussed above,
but this should not prevent overall cooling.

For F atoms initially in state Fc, the situation is rather more
complicated. Figure 6(b) shows the ratio γ for this state. At
energies and fields below about 50 mK, γ for Fc is actually
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FIG. 6. (Color online) Contour plots of the ratio γ of elastic to
total inelastic cross sections as a function of the collision energy and
magnetic field. Results are shown for collisions of spin-stretched H
(Hd ) with (a) spin-stretched F (Fh) and (b) Fc. The initial states are
highlighted in Fig. 2. The apparently uneven behavior of the contours
in (b) arises because our grid cannot fully capture the sharp singlet
resonances, which, on a finer grid, would appear as very narrow bands
rather than isolated peaks.

more favorable than for Fh. However, at higher energies the
spin-exchange collisions described above can occur, exciting
the F atom to Fh and transferring the H atom to Ha .
The latter is an untrapped state, so H atoms in the Ha state
will be removed from the trap and will not be available for
the reverse process. However, the F atoms transferred to state
Fh will have lost kinetic energy, so will remain trapped. If F
atoms in the Fc state start at a temperature of (say) 500 mK, it
will require about 25 elastic collisions to cool them to 50 mK
(or somewhat more if the H atom temperature is significant).
However, the cross section for spin-exchange collisions is
about 1/10 that for elastic collisions, so almost all the atoms
will be in state Fh by the time they have cooled to 50 mK.
Sympathetic cooling will then proceed mostly in state Fh even
if the atoms were initially in state Fc.

D. Sensitivity to the interaction potential

The ground-state potential for HF is very well known
from spectroscopic experiments [38] and, as seen above,
has relatively little effect on the inelastic cross sections,
particularly for atoms in spin-stretched states. However, there
is some uncertainty in the potential curves for the three excited
states. To explore the effect of this uncertainty on the cross
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FIG. 7. (Color online) Variation of the ratio γ of elastic to total
inelastic cross sections for spin-stretched collisions (Hd + Fh) at 1 G
(solid curves) and 1000 G (dashed curves), as a function of a scaling
factor λ applied to the excited-state potential curves.

sections, we have carried out calculations on sets of potentials
obtained by scaling the three excited curves by common factors
of λ = 0.90, 0.95, 1.05, and 1.10. This slightly changes the
1�+ curve as well. The resulting values of the ratio γ for
spin-stretched collisions at 1 and 1000 G are shown in Fig. 7.
It may be seen that γ is almost independent of λ below 1 mK
but that the differences increase at higher energies. The main
effect is that, as λ is increased, the p-wave resonance near
1 K drops to slightly lower energies and becomes higher
and narrower. As stated in Sec. III C, the key quantity is
the energy at which the ratio γ drops below 100: the worst
case is for λ = 1.10 at 1000 G, where this is reduced from
around 500 to around 250 mK. We conclude that plausible
variations in the potential may slightly affect the temperature
at which sympathetic cooling starts to work but do not alter
the qualitative conclusions.

The 1�+, 1	, 3�+, and 3	 potential curves used in the
present work have scattering lengths of −16.3, −107, −284,
and 12.1 Å, respectively. These may be compared with the
mean scattering length ā [58], which for this system is 3.2 Å.
The isotropic triplet potential V̂ 1

0 (R) supports one s-wave
bound state just below threshold. As λ is reduced from 1,
this state comes closer to threshold; the s-wave elastic and
inelastic cross sections both increase, but by similar factors, so
that γ is almost unchanged at low energies. It would require
an implausibly small value λ ≈ 0.8 to bring this state all the
way up to threshold.

IV. CONCLUSIONS

Ultracold hydrogen atoms are a very promising coolant
for atoms and molecules that are not amenable to laser
Doppler cooling. In previous work [20], we have shown that
sympathetic cooling with atomic hydrogen is likely to work for
molecules such as NH and OH, from starting temperatures of
100–1000 mK down to the microkelvin regime. In the present
paper we have shown that this is also true for atomic fluorine,
from starting temperatures of 500 to 1000 mK. Other halogen
atoms are likely to behave similarly, although more collisions
are needed for thermalization because of the higher mass ratio.

The calculations on F + H collisions have also allowed
us to test approximations made for the molecular systems.
In particular, for F + H it was possible to include the deep
singlet ground state fully in the calculations. Despite its depth,
the singlet state was found to have little effect on collisions
involving spin-stretched states. This gives us confidence that
approximating the deep low-spin surfaces, as was necessary
for NH + H and OH + H [20], is a good approximation.
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APPENDIX: MATRIX ELEMENTS

This Appendix describes the matrix elements used in the
coupled-channel calculations in both the uncoupled and the ls-
coupled basis sets described in Sec. II C. The matrix elements
for L̂2 are totally diagonal in both basis sets and are given by
L(L + 1).

Several terms in our Hamiltonian, (1), share the structure
Ĥj1j2 = κĵ1 · ĵ2, where κ is a scalar, while ĵ1 and ĵ2 are
vector operators. Their matrix elements in the basis set
|j1mj1〉|j2mj2〉 are

〈j2mj2|〈j1mj1|Ĥj1j2 |j1m
′
j1〉|j2m

′
j2〉

= δmj1m
′
j1
δmj2m

′
j2
κ mj1mj2 + δmj1m

′
j1±1δmj2m

′
j2∓1

× κ

2
[j1(j1 + 1) − mj1m

′
j1]1/2[j2(j2 + 1) − mj2m

′
j2]1/2.

(A1)

Such terms can mix functions with adjacent values of the
projections of ĵ1 and ĵ2 but preserve the sum m12 = mj1 +
mj2. Here and throughout this Appendix, the matrix elements
are fully diagonal with respect to quantum numbers that do
not explicitly appear in their definitions.

The matrix elements of Ĥ1 depend only on |α1〉 and are
thus identical in the two basis sets. Those for ĤF,1 are of the
form (A1), while those of ĤZ,1 are totally diagonal and are
given by

〈s1ms1|〈i1mi1|ĤZ,1|i1mi1〉|s1ms1〉
= (gSμBms1 − gi1μNmi1) B. (A2)

The matrix elements of Ĥ2 depend only on |α2〉. Those for
Ĥso are independent of the nuclear spin quantum numbers.
They have the form (A1) in the uncoupled basis set, while in
the ls-coupled basis set they are completely diagonal and are
given by

〈(l2s2)j2mj2|Ĥso|(l2s2)j2mj2〉
= aso

2
[j2(j2 + 1) − l2(l2 + 1) − s2(s2 + 1)] . (A3)

The matrix elements for the dipolar component of Ĥhf,2 are of
the form (A1) in both basis sets (once ĵ2 is split into l̂2 + ŝ2

for evaluation in the uncoupled basis set).
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The matrix elements for the quadrupolar term are readily calculated by first rearranging

〈α2|ĤQ|α′
2〉 = 2bj

⎛
⎝2

∑
α′′

2

〈α2|ı̂2 · ĵ2|α′′
2 〉〈α′′

2 |ı̂2 · ĵ2|α′
2〉 + 〈α2|ı̂2 · ĵ2|α′

2〉
⎞
⎠ (A4)

and then applying Eq. (A1) to each term. For instance, in the ls-coupled basis set

〈i2mi2|〈(l2s2)j2mj2|ĤQ|(l2s2)j2m
′
j2〉|i2m

′
i2〉 = 2bj

⎧⎨
⎩δmi2m

′
i2
δmj2m

′
j2

3mi2mj2 + δmi2m
′
i2±1δmj2m

′
j2∓1

× 1

2
(2mi2mj2 + 2m′

i2m
′
j2 + 1)[i2(i2 + 1) − mi2m

′
i2]1/2[j2(j2 + 1) − mj2m

′
j2]1/2

+ 1

2

∑
m′′

i2m
′′
j2

δmi2m
′′
i2±1δmj2m

′′
j2∓1[i2(i2 + 1) − mi2m

′′
i2]1/2[j2(j2 + 1) − mj2m

′′
j2]1/2

× δm′′
i2m

′
i2±1δm′′

j2m
′
j2∓1[i2(i2 + 1) − m′′

i2m
′
i2]1/2[j2(j2 + 1) − m′′

j2m
′
j2]1/2

⎫⎬
⎭ , (A5)

which is nonzero for �mi2 = 0, ± 1, ± 2 and �mj2 = −�mi2, thus preserving the sum mi2 + mj2. The uncoupled matrix
elements are evaluated similarly by first splitting ĵ2 into l̂2 + ŝ2.

The matrix elements for ĤZ,2 are totally diagonal in the uncoupled basis set,

〈s2ms2|〈l2ml2|〈i2mi2|ĤZ,2|i2mi2〉|l2ml2〉|s2ms2〉 = (g′
LμBml2 + gSμBms2 − gi2μNmi2)B, (A6)

while in the ls-coupled basis set they are given by

〈(l2s2)j2mj2|〈i2mi2|ĤZ,2|i2mi2〉|(l2s2)j ′
2mj2〉

=
[
gSμB(−1)2j2+l2+s2−mj2+1[s2(s2 + 1)(2s2 + 1)(2j2 + 1)(2j ′

2 + 1)]1/2

(
j2 1 j ′

2

−mj2 0 mj2

){
s2 j ′

2 l2

j2 s2 1

}

+ g′
LμB(−1)j2+j ′

2+l2+s2−mj2+1[l2(l2 + 1)(2l2 + 1)(2j2 + 1)(2j ′
2 + 1)]1/2

(
j2 1 j ′

2

−mj2 0 mj2

) {
l2 j ′

2 s2

j2 l2 1

}
− gi2μNmi2

]
B,

(A7)

where (:::) and {:::} represent Wigner 3-j and 6-j symbols. ĤZ,2 can thus mix states with different j2 while preserving the
projection mj2: for fluorine, it couples the j2 = 3/2 and 1/2 states only for mj2 = −1/2 or 1/2.

The matrix elements of the electronic interaction potential in the uncoupled basis set are

〈LML|〈s2ms2|〈l2ml2|〈s1ms1|V̂ |s1m
′
s1〉|l2m′

l2〉|s2m
′
s2〉|L′M ′

L〉

= (−1)2(s1−s2+MS )−ml2+M ′
L (2l2 + 1)[(2L + 1)(2L′ + 1)]1/2

∑
S

(2S + 1)

(
s1 s2 S

ms1 ms2 −MS

) (
s1 s2 S

m′
s1 m′

s2 −MS

)

×
∑

k

V̂ S
k (R)

(
l2 k l2

0 0 0

) (
l2 k l2

−ml2 mk m′
l2

) (
L k L′
0 0 0

) (
L k L′

−ML −mk M ′
L

)
, (A8)

with MS ≡ ms1 + ms2 = m′
s1 + m′

s2 and mk ≡ M ′
L − ML. The matrix elements for the isotropic terms V S

0 are off-diagonal only
in the ms quantum numbers while preserving MS . If l2 = 0, these are the only couplings induced by V̂ and have been studied in
detail in collisions of alkali atoms. For l2 
= 0, the anisotropic terms V S

k (k 
= 0) can additionally mix different partial waves and
change ml2 independently of ms2, thus changing their sum mj2 (such couplings exist even if s1 = 0).

The mixing of the electronic degrees of freedom makes it difficult to find an expression for the matrix elements of the
electronic interaction in the ls-coupled basis set that has a simple physical interpretation. It is more convenient to evaluate these
by transforming the matrix elements in the uncoupled representation, (A8), using the standard vector-coupling formula:

|(l2s2)j2mj2〉 =
∑

ml2ms2

〈l2ml2s2ms2|(l2s2)j2mj2〉|l2ml2〉|s2ms2〉. (A9)

If the extremely small nuclear contributions to the magnetic moments in Ĥdip are neglected, the matrix elements of Ĥ12

become diagonal in the nuclear projection quantum numbers. The matrix elements of the dipolar interaction in the uncoupled
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basis set are given by

〈LML|〈s2ms2|〈l2ml2|〈s1ms1|Ĥdip|s1m
′
s1〉|l2m′

l2〉|s2m
′
s2〉|L′M ′

L〉
= −

√
30δml2m

′
l2
λs1s2(R)(−1)s1−ms1+s2−ms2−ML [s1(s1 + 1)(2s1 + 1)s2(s2 + 1)(2s2 + 1)(2L + 1)(2L′ + 1)]1/2

×
(

L 2 L′

0 0 0

) ∑
q1,q2

(
1 1 2
q1 q2 −q

) (
s1 1 s1

−ms1 q1 m′
s1

) (
s2 1 s2

−ms2 q2 m′
s2

) (
L 2 L′

−ML −q M ′
L

)

−
√

30δms2m
′
s2
λs1l2(R)(−1)s1−ms1+l2−ml2−ML [s1(s1 + 1)(2s1 + 1)l2(l2 + 1)(2l2 + 1)(2L + 1)(2L′ + 1)]1/2

×
(

L 2 L′

0 0 0

) ∑
q1,q2

(
1 1 2
q1 q2 −q

) (
s1 1 s1

−ms1 q1 m′
s1

) (
l2 1 l2

−ml2 q2 m′
l2

) (
L 2 L′

−ML −q M ′
L

)
, (A10)

with the R-dependent spin-spin coupling λs1s2(R) = Ehα
2a3

0/R
3 (α ≈ 1/137 is the fine-structure constant), λs1l2 = (g′

L/gS)λs1s2,
and q ≡ q1 + q2. In the ls-coupled basis set,

〈LML|〈(l2s2)j2mj2|〈s1ms1|Ĥdip|s1m
′
s1〉|(l2s2)j ′

2m
′
j2〉|L′M ′

L〉

=
√

30(−1)s1−ms1+j2+l2+s2−mj2−ML [s1(s1 + 1)(2s1 + 1)(2j2 + 1)(2j ′
2 + 1)(2L + 1)(2L′ + 1)]1/2

(
L 2 L′

0 0 0

)

×
[
λs1s2(R)(−1)j2 [s2(s2 + 1)(2s2 + 1)]1/2

{
s2 j ′

2 l2

j2 s2 1

}
+ λs1l2(R)(−1)j

′
2 [l2(l2 + 1)(2l2 + 1)]1/2

{
l2 j ′

2 s2

j2 l2 1

}]

×
∑
q1,q2

(
1 1 2
q1 q2 −q

) (
s1 1 s1

−ms1 q1 m′
s1

) (
j2 1 j2

−mj2 q2 m′
j2

) (
L 2 L′

−ML −q M ′
L

)
. (A11)

These expressions show that Ĥdip adds to the couplings produced by V̂ in that (i) it relaxes the constraint of MS being conserved,
as long as �MS = −�ML; and (ii) it allows for changes in ml2 that preserve ML. The 3-j symbols in Eqs. (A8)–(A11) restrict
�L to be even, and thus channels with only even (or only odd) L values appear in the basis set for a given total parity P .
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