A novel, efficient synthesis of N-aryl pyrroles via reaction of 1-boronodienes with aryl nitroso compounds.

Fabien Tripoteau, Ludovic Eberlin, Mark A. Fox, Bertrand Carboni and Andrew Whiting

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX
DOI: 10.1039/c0xx00000x

Abstract A one-pot hetero-Diels-Alder/ring contraction cascade is presented from the reaction of 1-boronodienes and aryl nitroso derivatives to derive N-arylpyrroles in moderate to good yields (up to 82%). Experimental results and B3LYP calculations suggest that pyrrole formation proceeds via a 3,6-dihydro-1,2-oxazine followed by a novel boryl rearrangement and intramolecular aza-boryl to aldehyde addition-elimination sequence.

The wide ranging biological activity associated with pyrroles and particularly N-aryl pyrroles1 makes them a popular target for the development of novel synthetic approaches, including multicomponent assembly.2 This communication reports a new and unexpected N-arylpyrrole synthesis resulting from the reaction of an aryl nitroso compound with a 1-boronodiene, revealing interesting mechanistic questions.

The reaction of nitroso compounds with dienes is well known,3 deriving 3,6-dihydro-1,2-oxazines, which have a number of uses, including as bioactives and in synthetic applications.4 As part of a programme to examine the potential of nitroso dienophiles and 1-boronodienes5 for the cascade construction of novel structures,6 we examined the reaction of dienes 1 with aryl nitroso compounds 2 with the expectation of obtaining the oxazines 3 and/or 4 from which cascade reactions could be carried out to access allylic alcohols 5 and/or 6 (Scheme 1).

Scheme 1. Proposed cascade process initiated by a boronodiene-nitroso-dienophile cycloaddition.

However, instead of cycloadducts of type 3 and/or 4 being observed, the unexpected N-arylpyrrole 8 was identified (Eqn. 1) from the reaction of boronate 7 with nitrosobenzene. This prompted a more detailed investigation of this novel and intriguing process, and, in this communication, we report these preliminary studies.

When this reaction (Eqn. 1) was repeated and followed in situ by 1H NMR, no cycloadduct (of either type 3 or 4) could be observed; only 8 and 9 were identified from the product mixture, together with starting materials. After 5 h, the reaction was complete and the pyrrole 8 could be isolated in up to 82% yield (Entry 3, Table 1). Further studies were therefore conducted to see if this surprising result is general.

Indeed, as shown in Table 1, different aryl nitroso compounds do undergo this conversion with borylated dienes to provide the corresponding N-aryl pyrroles (Table 1). Yields were moderate to good and the reaction could be conducted in either methanol or DCM (see Entries 1, 2, Table 1) without an obvious solvent effect. A slightly higher yield appears to result from an excess of the aryl nitroso compound (compare Entries 3 and 1, Table 1) and hence, 2.5 equivalents of aryl nitroso compound was used for most of the reactions. Surprisingly, no significant influence was observed on either the nature or location of the aromatic ring substituent; major electronic effects were not apparent and yields for pyrroles 10-15 varied from 52 to 82% (Entries 4-9, Table 1).

The less accessible diene 16 reacted with nitrosobenzene to give the corresponding pyrrole 17 in 78% yield. However, with a more sterically hindered diene 18, there was a significant decrease of yield (16% for the pyrrole 19) even after an extended reaction time (Entry 11, Table 1). Changing the dienyboronate geometry to (Z) as in compound 20 also had a detrimental effect upon the reaction, with adduct 21 only being isolated in 34% yield, after 16 h (Entry 12, Table 1). Interestingly, this reaction can be also carried out using a trifluoroborylated diene 22, deriving the pyrroles 10, 14 and 15 with slightly improved yields (Entries 13-15, Table 1) compared to the pinacol ester variants. With these reactions exemplified, we examined similar reactions using both t-butylnitroso and acyl nitroso7 with diene 7, yet neither gave nitroso-Diels-Alder adducts.

Interesting results were obtained when MIDA and diethanolamine dienylboronates were examined with nitroso benzene, which might well reflect upon the mechanism (Eqns. 2-4). Using MIDA boronate 23 modifies the reactivity of the adjacent unsaturated moiety,9 hence providing the stable [4+2] cycloadduct 24 in 64% yield; the regiochemistry being assigned by NOESY NMR. (correlation between the o-phenyl H's and one of NCH's on the oxazine ring).
The reaction is faster with a pyrrole formation was observed, which suggests amounts of azoxybenzene with those of cycloadduct reaction in situ to be the case for the MIDA derivatives (see Eqn. 2). Hence, it seems to be the case that tricoordinated sp\(^3\) boron species are required for ring contraction from the oxazine to the pyrrole to take place. Finally, it appears that the arylnitroso is not required as a stoichiometric oxidant to effect pyrrole formation, and hence, a nitroso-based oxidation of the B-C bond of the oxazine might be ruled out as being involved in the ring contraction-pyrrole formation.

Using the diethanolamine ester 25 (Eqn. 3) and following the reaction in situ by \(^1\)H NMR (1.5 equiv. of PhNO), the cycloadduct 26 could be identified by comparison of its \(^1\)H NMR with those of 24. After 2 h, all diene was consumed, the boronated 1,2-oxazine had disappeared and pyrrole 8 (with small amounts of aзообензен 9 and 12% cycloadduct 26) were detected, which suggests that the reaction is faster with a diethanolamine ester (50% conversion after 5 min at rt vs. 5 h for total conversion of the pinacol ester, Table 1, Entry 2). This observation is also reinforced by the reaction of diene 27\(^1\) (Eqn. 4) which, in 2 h, provided a 48% yield of pyrrole 19 (c.f. 16% in 16 h, Entry 11, Table 1). The observation of the boronated 1,2-oxazine 26 shows that in this case, pyrrole formation is preceded by a regioselective nitroso-Diels-Alder reaction, which we therefore presume extends to all the other examples shown in Table 1. It is also noteworthy that no pyrrole formation was observed if the cycloadduct is stable towards hydrolysis as it is the case for the MIDA derivatives (see Eqn. 2).

Table 1. Arylnitroso to N-aryl pyrrole conversions by reaction with dienyl boronates.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Diene (^c)</th>
<th>Nitroso</th>
<th>Product</th>
<th>Conditions</th>
<th>Yield (%) (^d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>Ph-NO</td>
<td>8</td>
<td>ArNO 1.5 equiv., MeOH, RT, 5 h</td>
<td>67</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>Ph-NO</td>
<td>8</td>
<td>ArNO 1.5 equiv., CH(_2)Cl(_2), RT, 48 h</td>
<td>61</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>Ph-NO</td>
<td>8</td>
<td>ArNO 2.5 equiv., MeOH, RT, 5 h</td>
<td>82</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>4-Me-C(_2)H(_4)-NO</td>
<td></td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>4-Cl-C(_2)H(_4)-NO</td>
<td></td>
<td></td>
<td>68</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>4-Br-C(_2)H(_4)-NO</td>
<td></td>
<td></td>
<td>65</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>4-EtO(_2)C-C(_2)H(_4)-NO</td>
<td></td>
<td></td>
<td>57</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>4-MeO-C(_2)H(_4)-NO</td>
<td></td>
<td></td>
<td>71</td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td>2-Me-C(_2)H(_4)-NO</td>
<td></td>
<td></td>
<td>52</td>
</tr>
<tr>
<td>10</td>
<td>7</td>
<td>Ph-NO</td>
<td>11</td>
<td>ArNO 2.5 equiv., MeOH, RT, 16 h</td>
<td>78</td>
</tr>
<tr>
<td>11</td>
<td>7</td>
<td>Ph-NO</td>
<td>8</td>
<td>ArNO 2.5 equiv., MeOH, RT, 16 h</td>
<td>16</td>
</tr>
<tr>
<td>12</td>
<td>7</td>
<td>Ph-NO</td>
<td>19</td>
<td>ArNO 2.5 equiv., MeOH, RT, 16 h</td>
<td>34</td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>4-Me-C(_2)H(_4)-NO</td>
<td>10</td>
<td>ArNO 2.5 equiv., MeOH, RT, 5 h</td>
<td>66</td>
</tr>
<tr>
<td>14</td>
<td>7</td>
<td>4-MeO-C(_2)H(_4)-NO</td>
<td>14</td>
<td></td>
<td>77</td>
</tr>
<tr>
<td>15</td>
<td>7</td>
<td>2-Me-C(_2)H(_4)-NO</td>
<td>15</td>
<td></td>
<td>69</td>
</tr>
</tbody>
</table>

\(^c\)For diene synthesis, see ref 8. \(^d\)Yields are isolated yields after silica gel chromatography. Lower yields tend to reflect the difficulty of separating azo and azo-oxide by-products from the pyrroles; all conversions were high (with the exception Entry 11, which is a slow and less efficient reaction).
These results raise the obvious question as to the reaction mechanism. Although it is known that 3,6-dihydro-1,2-oxazines can be directly or indirectly converted to pyroles, the conditions employed here (spontaneous ring contraction) are clearly quite different since this transformation mostly requires several steps, specific substrates, photolysis, high temperature, samarium diiodide, oxidants, basic or acidic reagents. For this case, we propose that the pyrrole formation proceeds (Scheme 2) through the Diels-Alder reaction of the boronodiene to give 29, followed by a boryl rearrangement (to give 30), intramolecularaza-boryl 1 to aldehyde addition (to give 31) and borate elimination (to give 17). This is supported by intrinsic reaction coordinate pathways of model geometries related to compounds shown in Scheme 2 computed at B3LYP/6-31G** (see ESI). All steps are computed to be exothermic thus supporting the proposed cascade process. In the initial Diels-Alder reaction step where four different pathways were determined, the lowest transition state (TS) barrier was found to be only 8.8 kcal mol⁻¹.

Scheme 2. Proposed mechanism for the formation of boronodiene aryl nitroso compounds to give pyrroles.

In conclusion, we report a novel approach to N-aryl pyroles which we believe proceeds through a [4+2] cycloaddition/ring contraction cascade process from aryl nitroso compounds and 1-boronodiene. This reaction reveals interesting mechanistic features that are in agreement with similar behaviour previously observed with related five-membered ring heterocycles. Further investigations to confirm the proposed rearrangement mechanism that derives the pyrrole products, its generality and the influence of the boron substituents are currently underway in our laboratories.

L. E. thanks the Durham University and the Région Bretagne for a PhD grant. We also thank Rennes Metropole for a studentship to F.-T. This work has been financially supported by CNRS and the University of Rennes 1 in the context of the LIA Rennes-Durham (Molecular Materials and Catalysis).

Notes and references

9 This class of boron-substituted 1,3-diene has been proven to be extremely reactive for the Diels–Alder reactions with N-phenylmaleimide; see: a) J. Mortier, M. Valtier, B. Plunian, L. Toupet, Heterocycles, 1999, 50, 703-711; b) L. Wang, C. Day, M. Wright, M. Welker, Beilstein J. Org. Chem., 2009, 5, 45-49.