We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

Thermal enhancement and stochastic resonance of polaron ratchet.

Brizhik, L.S. and Eremko, A.A. and Piette, B.A.M.G. and Zakrzewski, W.J. (2014) 'Thermal enhancement and stochastic resonance of polaron ratchet.', Physical review E., 89 (6). 062905.


We study the ratchet drift of large polarons (solitons) in molecular diatomic chains induced by unbiased time periodic electric fields at nonzero temperature below its critical value. We show that, at a nonzero temperature, the critical value of the intensity of the electric field above which the ratchet phenomenon takes place is lower than at zero temperature for the same frequency of the field. We show that there is a range of temperatures for which the polaron drift is larger than that at zero temperature. We also show that temperature decreases the value of the lowest critical period of the field. And, finally, we demonstrate that there is a stochastic resonance in a polaron ratchet, namely that there is an optimal temperature at which the polaron drift is a maximum. The values of the stochastic resonance temperature, the lowest critical values of the field intensity, and its period depend on various parameters of the system and, in particular, on the anisotropy of the chain parameters. This temperature induced decrease of the critical value of the field intensity and its period, as well as the stochastic resonance itself, may be important for practical applications of the ratchet phenomenon in systems involving conducting polymers and other low-dimensional materials. They may also be important in some biological macromolecules where the ratchet phenomenon could take place in biomotors and energy and/or charge transport.

Item Type:Article
Full text:(VoR) Version of Record
Download PDF
Publisher Web site:
Publisher statement:Reprinted with permission from the American Physical Society: L. S. Brizhik, A. A. Eremko, B. M. A. G. Piette, and W. J. Zakrzewski, Physical Review E, 89, 062905, 2014. © 2014 by the American Physical Society. Readers may view, browse, and/or download material for temporary copying purposes only, provided these uses are for noncommercial personal purposes. Except as provided by law, this material may not be further reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole or part, without prior written permission from the American Physical Society.
Date accepted:No date available
Date deposited:10 June 2014
Date of first online publication:09 June 2014
Date first made open access:No date available

Save or Share this output

Look up in GoogleScholar