We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

Empirical predictions for (sub-)millimeter line and continuum deep fields.

da Cunha, E. and Walter, F. and Decarli, R. and Bertoldi, F. and Carilli, C. and Daddi, E. and Elbaz, D. and Ivison, R. and Maiolino, R. and Riechers, D. and Rix, H.-W. and Sargent, M. and Smail, I. and Weiss, A. (2013) 'Empirical predictions for (sub-)millimeter line and continuum deep fields.', Astrophysical journal., 765 (1). p. 9.


Modern (sub-)millimeter/radio interferometers such as ALMA, JVLA, and the PdBI successor NOEMA will enable us to measure the dust and molecular gas emission from galaxies that have luminosities lower than the Milky Way, out to high redshifts and with unprecedented spatial resolution and sensitivity. This will provide new constraints on the star formation properties and gas reservoir in galaxies throughout cosmic times through dedicated deep field campaigns targeting the CO/[C II] lines and dust continuum emission in the (sub-)millimeter regime. In this paper, we present empirical predictions for such line and continuum deep fields. We base these predictions on the deepest available optical/near-infrared Advanced Camera for Surveys and NICMOS data on the Hubble Ultra Deep Field (over an area of about 12 arcmin2). Using a physically motivated spectral energy distribution model, we fit the observed optical/near-infrared emission of 13,099 galaxies with redshifts up to z = 5, and obtain median-likelihood estimates of their stellar mass, star formation rate, dust attenuation, and dust luminosity. We combine the attenuated stellar spectra with a library of infrared emission models spanning a wide range of dust temperatures to derive statistical constraints on the dust emission in the infrared and (sub-)millimeter which are consistent with the observed optical/near-infrared emission in terms of energy balance. This allows us to estimate, for each galaxy, the (sub-)millimeter continuum flux densities in several ALMA, PdBI/NOEMA, and JVLA bands. As a consistency check, we verify that the 850 μm number counts and extragalactic background light derived using our predictions are consistent with previous observations. Using empirical relations between the observed CO/[C II] line luminosities and the infrared luminosity of star-forming galaxies, we infer the luminosity of the CO(1-0) and [C II] lines from the estimated infrared luminosity of each galaxy in our sample. We then predict the luminosities of higher CO transition lines CO(2-1) to CO(7-6) based on two extreme gas excitation scenarios: quiescent (Milky Way) and starburst (M82). We use our predictions to discuss possible deep field strategies with ALMA. The predictions presented in this study will serve as a direct benchmark for future deep field campaigns in the (sub-)millimeter regime.

Item Type:Article
Keywords:Dust, Extinction, Galaxies: evolution, Galaxies: ISM, Galaxies: statistics, Submillimeter: galaxies.
Full text:(VoR) Version of Record
Download PDF
Publisher Web site:
Publisher statement:© 2013. The American Astronomical Society. All rights reserved.
Date accepted:No date available
Date deposited:23 June 2014
Date of first online publication:March 2013
Date first made open access:No date available

Save or Share this output

Look up in GoogleScholar