We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

An ALMA survey of sub-millimeter galaxies in the Extended Chandra Deep Field South : sub-millimeter properties of color-selected galaxies.

Decarli, R. and Smail, I. and Walter, F. and Swinbank, A.M. and Chapman, S. and Coppin, K.E.K. and Cox, P. and Dannerbauer, H. and Greve, T.R. and Hodge, J.A. and Ivison, R. and Karim, A. and Knudsen, K.K. and Lindroos, L. and Rix, H.-W. and Schinnerer, E. and Simpson, J.M. and van der Werf, P. and Weiß, A. (2014) 'An ALMA survey of sub-millimeter galaxies in the Extended Chandra Deep Field South : sub-millimeter properties of color-selected galaxies.', Astrophysical journal., 780 (2). p. 115.


We study the sub-millimeter properties of color-selected galaxies via a stacking analysis applied for the first time to interferometric data at sub-millimeter wavelengths. We base our study on 344 GHz ALMA continuum observations of ~20''-wide fields centered on 86 sub-millimeter sources detected in the LABOCA Extended Chandra Deep Field South (ECDFS) Sub-millimeter Survey. We select various classes of galaxies (K-selected, star-forming sBzK galaxies, extremely red objects, and distant red galaxies) according to their optical/near-infrared fluxes. We find clear, >10σ detections in the stacked images of all these galaxy classes. We include in our stacking analysis Herschel/SPIRE data to constrain the dust spectral energy distribution of these galaxies. We find that their dust emission is well described by a modified blackbody with T dust ≈ 30 K and β = 1.6 and infrared luminosities of (5-11) × 1011 L ☉ or implied star formation rates of 75-140 M ☉ yr–1. We compare our results with those of previous studies based on single-dish observations at 870 μm and find that our flux densities are a factor 2-3 higher than previous estimates. The discrepancy is observed also after removing sources individually detected in ALESS maps. We report a similar discrepancy by repeating our analysis on 1.4 GHz observations of the whole ECDFS. Hence, we find tentative evidence that galaxies that are associated in projected and redshift space with sub-mm bright sources are brighter than the average population. Finally, we put our findings in the context of the cosmic star formation rate density as a function of redshift.

Item Type:Article
Keywords:Galaxies: high-redshift, Galaxies: star formation, Submillimeter: galaxies, Techniques: interferometric.
Full text:(VoR) Version of Record
Download PDF
Publisher Web site:
Publisher statement:© 2014. The American Astronomical Society. All rights reserved.
Date accepted:No date available
Date deposited:23 June 2014
Date of first online publication:January 2014
Date first made open access:No date available

Save or Share this output

Look up in GoogleScholar