Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham Research Online
You are in:

Infrared structure at NNLO using antenna subtraction.

Currie, J. and Glover, E.W.N. and Wells, S. (2013) 'Infrared structure at NNLO using antenna subtraction.', Journal of high energy physics., 2013 (4). 066.

Abstract

We consider the infrared structure of hadron-hadron collisions at next-to-next-to leading order using the antenna subtraction method. The general form of the subtraction terms is presented for double real, real-virtual and double virtual contributions. At NLO and NNLO it is shown that the virtual and double virtual subtraction terms can be written in terms of integrated dipoles, formed by systematically combining the mass factorisation contributions and integrated antenna functions. The integrated dipoles describing ℓ unresolved partons, denoted J(ℓ)2, are related to Catani’s IR singularity operators, I(ℓ)ij(∈). It is shown that the IR pole structure of the virtual and double virtual contributions can be written as a sum over integrated dipoles within the antenna subtraction formalism and the master expressions analogous to Catani’s one- and two-loop factorisation formulae are derived. To demonstrate the techniques described in this paper, we apply antenna subtraction to the production of two gluon jets via quark-antiquark scattering at NLO and NNLO. Double real, real-virtual and double virtual subtraction terms are explicitly derived for the leading colour NNLO contribution.

Item Type:Article
Keywords:NLO computations, Hadronic colliders.
Full text:(VoR) Version of Record
Download PDF
(1521Kb)
Status:Peer-reviewed
Publisher Web site:http://dx.doi.org/10.1007/JHEP04(2013)066
Publisher statement:© SISSA 2013. Published for SISSA by Springer. The final publication is available at Springer via http://dx.doi.org/10.1007/JHEP04(2013)066.
Date accepted:No date available
Date deposited:09 July 2014
Date of first online publication:April 2013
Date first made open access:No date available

Save or Share this output

Export:
Export
Look up in GoogleScholar