We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

The slowly evolving role of environment in a spectroscopic survey of star formation in M∗ > 5 × 108 M⊙ galaxies since z ∼ 1.

Greene, C.R. and Gilbank, D.G. and Balogh, M.L. and Glazebrook, K. and Bower, R.G. and Baldry, I.K. and Hau, G.K.T. and Li, I.H. and McCarthy, P. (2012) 'The slowly evolving role of environment in a spectroscopic survey of star formation in M∗ > 5 × 108 M⊙ galaxies since z ∼ 1.', Monthly notices of the Royal Astronomical Society., 425 (3). pp. 1738-1752.


We present a deep [O II] emission-line survey of faint galaxies (22.5< KAB <24) in the Chandra Deep Field South (CDFS) and the Faint Infra-Red Extragalactic Survey (FIRES) field. With these data we measure the star formation rate (SFR) in galaxies in the stellar mass range 8.85 ≲ log (M*/M⊙) ≲ 9.5 at 0.62 < z < 0.885, to a limit of SFR ∼ 0.1 M⊙ yr−1. The presence of a massive cluster (MS1054−03) in the FIRES field, and of significant large-scale structure in the CDFS field, allows us to study the environmental dependence of SFRs amongst this population of low-mass galaxies. Comparing our results with more massive galaxies at this epoch, with our previous survey [Redshift One LDSS-3 Emission Line Survey (ROLES)] at the higher redshift z ∼ 1, and with Sloan Digital Sky Survey (SDSS) Stripe 82 data, we find no significant evolution of the stellar mass function of star-forming galaxies between z = 0 and z ∼ 1, and no evidence that its shape depends on environment. The correlation between specific star formation rate (sSFR) and stellar mass at z ∼ 0.75 has a power-law slope of β ∼ −0.2, with evidence for a steeper relation at the lowest masses. The normalization of this correlation lies as expected between that corresponding to z ∼ 1 and the present day. The global SFR density is consistent with an evolution of the form (1 + z)2 over 0 < z < 1, with no evidence for a dependence on stellar mass. The sSFR of these star-forming galaxies at z ∼ 0.75 does not depend upon the density of their local environment. Considering just high-density environments, the low-mass end of the sSFR–M* relation in our data is steeper than that in Stripe 82 at z = 0, and shallower than that measured by ROLES at z = 1. Evolution of low-mass galaxies in dense environments appears to be more rapid than in the general field.

Item Type:Article
Keywords:Galaxies: dwarf, Galaxies: evolution, Galaxies: general.
Full text:(VoR) Version of Record
Download PDF
Publisher Web site:
Publisher statement:This article has been accepted for publication in Monthly notices of the Royal Astronomical Society © 2012 The Authors Published by Oxford University Press on behalf of Royal Astronomical Society. All rights reserved.
Date accepted:No date available
Date deposited:21 August 2014
Date of first online publication:September 2012
Date first made open access:No date available

Save or Share this output

Look up in GoogleScholar