We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

On the effects of line-of-sight structures on lensing flux-ratio anomalies in a ΛCDM universe.

Xu, D.D. and Mao, S. and Cooper, A.P. and Gao, L. and Frenk, C.S. and Angulo, R.E. and Helly, J. (2012) 'On the effects of line-of-sight structures on lensing flux-ratio anomalies in a ΛCDM universe.', Monthly notices of the Royal Astronomical Society., 421 (3). pp. 2553-2567.


The flux-ratio anomalies observed in multiply lensed quasar images are most plausibly explained as the result of perturbing structures superposed on the underlying smooth matter distribution of the primary lens. The cold dark matter cosmological model predicts that a large number of substructures should survive inside larger haloes but, surprisingly, this population alone has been shown to be insufficient to explain the observed distribution of the flux ratios of quasars’ multiple images. Other haloes (and their subhaloes) projected along the line of sight to the primary lens have been considered as additional sources of perturbation. In this work, we use ray tracing through the Millennium II simulation to investigate the importance of projection effects due to haloes and subhaloes of mass m > 108 h−1 M⊙ and extend our analysis to lower masses, m≥ 106 h−1 M⊙, using Monte Carlo halo distributions. We find that the magnitude of the violation depends strongly on the density profile and concentration of the intervening haloes, but clustering plays only a minor role. For a typical lensing geometry (lens at a redshift of 0.6 and source at a redshift of 2), background haloes (behind the main lens) are more likely to cause a violation than foreground haloes. We conclude that line-of-sight structures can be as important as intrinsic substructures in causing flux-ratio anomalies. The combined effect of perturbing structures within the lens and along the line of sight in the Λ cold dark matter (ΛCDM) universe results in a cusp-violation probability of 20–30 per cent. This alleviates the discrepancy between models and current data, but a larger observational sample is required for a stronger test of the theory.

Item Type:Article
Keywords:Gravitational lensing: strong, Galaxies: haloes, Galaxies: structure, Cosmology: theory, Dark matter.
Full text:(VoR) Version of Record
Download PDF
Publisher Web site:
Publisher statement:This article has been accepted for publication in Monthly notices of the Royal Astronomical Society © 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS Published by Oxford University Press on behalf of Royal Astronomical Society. All rights reserved.
Date accepted:No date available
Date deposited:21 August 2014
Date of first online publication:April 2012
Date first made open access:No date available

Save or Share this output

Look up in GoogleScholar