We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

The missing massive satellites of the Milky Way.

Wang, J. and Frenk, C.S. and Navarro, J.F. and Gao, L. and Sawala, T. (2012) 'The missing massive satellites of the Milky Way.', Monthly notices of the Royal Astronomical Society., 424 (4). pp. 2715-2721.


Recent studies suggest that only three of the 12 brightest satellites of the Milky Way (MW) inhabit dark matter haloes with maximum circular velocity, Vmax, exceeding ∼30 km s−1. This is in apparent contradiction with the Λ cold dark matter (CDM) simulations of the Aquarius Project, which suggest that MW-sized haloes should have at least eight subhaloes with Vmax > 30 km s−1. The absence of luminous satellites in such massive subhaloes is thus puzzling and may present a challenge to the ΛCDM paradigm. We note, however, that the number of massive subhaloes depends sensitively on the (poorly known) virial mass of the MW, and that their scarcity makes estimates of their abundance from a small simulation set like Aquarius uncertain. We use the Millennium Simulation series and the invariance of the scaled subhalo velocity function (i.e. the number of subhaloes as a function of ν, the ratio of the subhalo Vmax to the host halo virial velocity, V200) to secure improved estimates of the abundance of rare massive subsystems. In the range 0.1 < ν < 0.5, Nsub(>ν) is approximately Poisson distributed about an average given by 〈Nsub〉 = 10.2 (ν/0.15)−3.11. This is slightly lower than that in Aquarius haloes, but consistent with recent results from the Phoenix Project. The probability that a ΛCDM halo has three or fewer subhaloes with Vmax above some threshold value, Vth, is then straightforward to compute. It decreases steeply both with decreasing Vth and with increasing halo mass. For Vth = 30 km s−1, ∼40 per cent of Mhalo = 1012 M⊙ haloes pass the test; fewer than ∼5 per cent do so for Mhalo ≳ 2 × 1012 M⊙ and the probability effectively vanishes for Mhalo ≳ 3 × 1012 M⊙. Rather than a failure of ΛCDM, the absence of massive subhaloes might simply indicate that the MW is less massive than is commonly thought.

Item Type:Article
Keywords:Galaxy: abundances, Galaxy: halo, Dark matter.
Full text:(VoR) Version of Record
Download PDF
Publisher Web site:
Publisher statement:This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society © 2012 RAS Published by Oxford University Press on behalf of Royal Astronomical Society. All rights reserved.
Date accepted:No date available
Date deposited:22 August 2014
Date of first online publication:August 2012
Date first made open access:No date available

Save or Share this output

Look up in GoogleScholar