Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham Research Online
You are in:

Measuring BAO and non-Gaussianity via QSO clustering.

Sawangwit, U. and Shanks, T. and Croom, S.M. and Drinkwater, M.J. and Fine, S. and Parkinson, D. and Ross, N.P. (2012) 'Measuring BAO and non-Gaussianity via QSO clustering.', Monthly notices of the Royal Astronomical Society., 420 (3). pp. 1916-1925.

Abstract

Our goals are (i) to search for BAO and large-scale structure in current quasi-stellar object (QSO) survey data and (ii) to use these and simulation/forecast results to assess the science case for a new, ≳10 times larger, QSO survey. We first combine the Sloan Digital Sky Survey (SDSS), 2dF QSO Redshift Survey (2QZ) and 2dF-SDSS LRG and QSO (2SLAQ) surveys to form a survey of ≈60 000 QSOs. We find a hint of a peak in the QSO two-point correlation function, ξ(s), at the same scale (≈105 h−1 Mpc) as detected by Eisenstein et al. in their sample of Data Release 5 (DR5) Luminous Red Galaxies (LRGs) but only at low statistical significance. We then compare these data with QSO mock catalogues from the Hubble Volume N-body light-cone simulation used by Hoyle et al. and find that both routes give statistical error estimates that are consistent at ≈100 h−1 Mpc scales. Mock catalogues are then used to estimate the nominal survey size needed for a 3–4σ detection of the Baryon Acoustic Oscillations (BAO) peak. We find that a redshift survey of ≈250 000 z < 2.2 QSOs is required over ≈3000 deg2. This is further confirmed by static lognormal simulations where the BAO are clearly detectable in the QSO power spectrum and correlation function. The nominal survey would on its own produce the first detection of, for example, discontinuous dark energy evolution in the so far uncharted 1 < z < 2.2 redshift range. We further find that a survey with ≈50 per cent higher QSO sky densities and 50 per cent bigger area will give an ≈6σ BAO detection, leading to an error ≈60 per cent of the size of the BOSS error on the dark energy evolution parameter, wa. Another important aim of a QSO survey is to place new limits on primordial non-Gaussianity at large scales. In particular, it is important to test tentative evidence we have found for the evolution of the linear form of the combined SDSS+2QZ+2SLAQ QSO ξ(s) at z≈ 1.6, which may be caused by the existence of non-Gaussian clustering features at high redshift. Such a QSO survey will also determine the gravitational growth rate at z≈ 1.6 via redshift-space distortions, allow lensing tomography via QSO magnification bias while also measuring the exact luminosity dependence of small-scale QSO clustering.

Item Type:Article
Keywords:Quasars: general, Cosmology: observations, Dark energy, Distance scale, Inflation, Large-scale structure of Universe.
Full text:(VoR) Version of Record
Download PDF
(1456Kb)
Status:Peer-reviewed
Publisher Web site:http://dx.doi.org/10.1111/j.1365-2966.2011.19848.x
Publisher statement:This article has been accepted for publication in Monthly notices of the Royal Astronomical Society © 2012 The Authors Monthly Notices of the Royal Astronomical Society © 2012 RAS Published by Oxford University Press on behalf of Royal Astronomical Society. All rights reserved.
Date accepted:No date available
Date deposited:22 August 2014
Date of first online publication:March 2012
Date first made open access:No date available

Save or Share this output

Export:
Export
Look up in GoogleScholar