We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

Hubble Frontier Fields: a high-precision strong-lensing analysis of galaxy cluster MACSJ0416.1-2403 using ∼200 multiple images

Jauzac, M. and Clément, B. and Limousin, M. and Richard, J. and Jullo, E. and Ebeling, H. and Atek, H. and Kneib, J.-P. and Knowles, K. and Natarajan, P. and Eckert, D. and Egami, E. and Massey, R. and Rexroth, M. (2014) 'Hubble Frontier Fields: a high-precision strong-lensing analysis of galaxy cluster MACSJ0416.1-2403 using ∼200 multiple images.', Monthly notices of the Royal Astronomical Society., 443 (2). pp. 1549-1554.


We present a high-precision mass model of the galaxy cluster MACSJ0416.1-2403, based on a strong-gravitational-lensing analysis of the recently acquired Hubble Space Telescope Frontier Fields (HFF) imaging data. Taking advantage of the unprecedented depth provided by HST/Advanced Camera for Survey observations in three passbands, we identify 51 new multiply imaged galaxies, quadrupling the previous census and bringing the grand total to 68, comprising 194 individual lensed images. Having selected a subset of the 57 most securely identified multiply imaged galaxies, we use the LENSTOOL software package to constrain a lens model comprised of two cluster-scale dark-matter haloes and 98 galaxy-scale haloes. Our best-fitting model predicts image positions with an rms error of 0.68 arcsec, which constitutes an improvement of almost a factor of 2 over previous, pre-HFF models of this cluster. We find the total projected mass inside a 200 kpc aperture to be (1.60 ± 0.01) × 1014 M⊙, a measurement that offers a three-fold improvement in precision, reaching the per cent level for the first time in any cluster. Finally, we quantify the increase in precision of the derived gravitational magnification of high-redshift galaxies and find an improvement by a factor of ∼2.5 in the statistical uncertainty. Our findings impressively confirm that HFF imaging has indeed opened the domain of high-precision mass measurements for massive clusters of galaxies.

Item Type:Article
Keywords:Gravitational lensing: strong, Galaxies: clusters: individual: MACSJ0416.1-2403, Cosmology: observations.
Full text:(VoR) Version of Record
Download PDF
Publisher Web site:
Publisher statement:This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society © 2014 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.
Date accepted:13 June 2014
Date deposited:16 December 2014
Date of first online publication:23 July 2014
Date first made open access:04 January 2023

Save or Share this output

Look up in GoogleScholar