Yeates, A. R. and Russell, A. J. B. and Hornig, G. (2015) 'Physical role of topological constraints in localized magnetic relaxation.', Proceedings of the Royal Society A., 471 (2178). p. 20150012.
Abstract
Predicting the final state of turbulent plasma relaxation is an important challenge, both in astro-physical plasmas such as the Sun's corona and in controlled thermonuclear fusion. Recent numerical simulations of plasma relaxation with braided magnetic fields identified the possibility of a novel constraint, arising from the topological degree of the magnetic field-line mapping. This constraint implies that the final relaxed state is drastically different for an initial configuration with topological degree 1 (which allows a Taylor relaxation) and one with degree 2 (which does not reach a Taylor state). Here, we test this transition in numerical resistive-magnetohydrodynamic simulations, by embedding a braided magnetic field in a linear force-free background. Varying the background force-free field parameter generates a sequence of initial conditions with a transition between topological degree 1 and 2. For degree 1, the relaxation produces a single twisted flux tube, whereas for degree 2 we obtain two flux tubes. For predicting the exact point of transition, it is not the topological degree of the whole domain that is relevant, but only that of the turbulent region.
Item Type: | Article |
---|---|
Full text: | (AM) Accepted Manuscript Download PDF (2201Kb) |
Full text: | (VoR) Version of Record Available under License - Creative Commons Attribution. Download PDF (1439Kb) |
Status: | Peer-reviewed |
Publisher Web site: | http://dx.doi.org/10.1098/rspa.2015.0012 |
Publisher statement: | © 2015 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. |
Date accepted: | 30 April 2015 |
Date deposited: | 15 January 2015 |
Date of first online publication: | 08 June 2015 |
Date first made open access: | No date available |
Save or Share this output
Export: | |
Look up in GoogleScholar |