We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

Physical characteristics of kimberlite and basaltic intraplate volcanism and implications of a biased kimberlite record.

Brown, R.J. and Valentine, G.A. (2013) 'Physical characteristics of kimberlite and basaltic intraplate volcanism and implications of a biased kimberlite record.', Geological Society of America bulletin., 125 (7-8). pp. 1224-1238.


We assess bias in the record of kimberlite volcanism by using newly acquired size data on more than 900 kimberlite bodies from 12 kimberlite fields eroded to depths of between 0 m and >1200 m, and by a comparison with intraplate monogenetic basaltic volcanic fields. Eroded kimberlite fields are composed of pipes (or diatremes) and dikes, and within any one kimberlite field, regardless of erosion level, kimberlite bodies vary in area at Earth’s surface over 2–3 orders of magnitude. Typically 60%–70% of the bodies are <10% the area of the largest pipe in the field. The maximum size of a kimberlite pipe found in a field shows a relationship with estimated erosion levels, suggesting that the erosion level of a region could be used to predict the maximum potential size of a pipe where it intersects the surface. The data indicate that the selective removal of surface volcanic structures and deposits by erosion has distorted the geological record of kimberlite volcanism. Selective mining of preferentially large, diamondiferous kimberlite pipes and underreporting of small kimberlite pipes and dikes add further bias. A comparison of kimberlite volcanic fields with intraplate monogenetic basaltic volcanic fields indicates that both types of volcanism overlap in terms of field size, volcano number and size, and typical erupted volumes. Eroded monogenetic basaltic fields consist of dikes that fed effusive and weakly explosive surface eruptions, and diatremes (pipes) generated during phreatomagmatic eruptions, and they are structurally similar to eroded kimberlite fields. Reassessment of published data suggests that kimberlite magmas can erupt in a variety of ways and that most published data, taken from the largest kimberlite pipes, may not be representative of kimberlite volcanism as a whole. This refuels long-standing debates as to whether kimberlite pipes (diatremes) primarily result from phreatomagmatic eruptions (as in basaltic volcanism) or from volatile-driven magmatic eruptions.

Item Type:Article
Full text:(AM) Accepted Manuscript
Download PDF
Publisher Web site:
Date accepted:No date available
Date deposited:21 January 2015
Date of first online publication:July 2013
Date first made open access:No date available

Save or Share this output

Look up in GoogleScholar