Skip to main content

Research Repository

Advanced Search

Links between Notchback Geometry, Aerodynamic Drag, Flow Asymmetry and Unsteady Wake Structure

Sims-Williams, D.B.; Marwood, D.; Sprot, A.J.

Links between Notchback Geometry, Aerodynamic Drag, Flow Asymmetry and Unsteady Wake Structure Thumbnail


Authors

D. Marwood

A.J. Sprot



Abstract

The rear end geometry of road vehicles has a significant impact on aerodynamic drag and hence on energy consumption. Notchback (sedan) geometries can produce a particularly complex flow structure which can include substantial flow asymmetry. However, the interrelation between rear end geometry, flow asymmetry and aerodynamic drag has lacked previous published systematic investigation. This work examines notchback flows using a family of 16 parametric idealized models. A range of techniques are employed including surface flow visualization, force measurement, multi-hole probe measurements in the wake, PIV over the backlight and trunk deck and CFD. It is shown that, for the range of notchback geometries investigated here, a simple offset applied to the effective backlight angle can collapse the drag coefficient onto the drag vs backlight angle curve of fastback geometries. This is because even small notch depth angles are important for a sharp-edged body but substantially increasing the notch depth had little further impact on drag. This work shows that asymmetry originates in the region on the backlight and trunk deck and occurs progressively with increasing notch depth, provided that the flow reattaches on the trunk deck and that the effective backlight angle is several degrees below its crucial value for non-reattachment. A tentative mapping of the flow structures to be expected for different geometries is presented. CFD made it possible to identify a link between flow asymmetry and unsteadiness. Unsteadiness levels and principal frequencies in the wake were found to be similar to those for high-drag fastback geometries. The shedding of unsteady transverse vortices from the backlight recirculation region has been observed.

Citation

Sims-Williams, D., Marwood, D., & Sprot, A. (2011). Links between Notchback Geometry, Aerodynamic Drag, Flow Asymmetry and Unsteady Wake Structure. SAE International Journal of Passenger Cars - Mechanical Systems, 4(1), 156-165. https://doi.org/10.4271/2011-01-0166

Journal Article Type Article
Publication Date Apr 12, 2011
Deposit Date Dec 29, 2011
Publicly Available Date Feb 26, 2015
Journal SAE International Journal of Passenger Cars - Mechanical Systems
Print ISSN 1946-3995
Electronic ISSN 1946-4002
Publisher SAE International
Peer Reviewed Peer Reviewed
Volume 4
Issue 1
Pages 156-165
DOI https://doi.org/10.4271/2011-01-0166

Files




You might also like



Downloadable Citations