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ABSTRACT

We have made a detailed comparison of the results of N-body simulations with the
analytical description of the merging histories of dark matter haloes presented in
Lacey & Cole, which is based on an extension of the Press—Schechter method. We
find the analytical predictions for the halo mass function, merger rates and formation
times to be remarkably accurate. The N-body simulations used 128° particles and
were of self-similar clustering, with Q=1 and initial power spectra P(k)c k", with
spectral indices n= —2, — 1, 0. The analytical model is, however, expected to apply
for arbitrary Q and more general power spectra. Dark matter haloes were identified
in the simulations using two different methods and at a range of overdensities. For
haloes selected at mean overdensities ~ 100-200, the analytical mass function was
found to provide a good fit to the simulations with a collapse threshold close to that
predicted by the spherical collapse model, with a typical error of < 30 per cent over a
range of 10% in mass, which is the full dynamical range of our N-body simulations.
This was insensitive to the type of filtering used. Over a range of 10?-103 in mass,
there was also good agreement with the analytical predictions for merger rates,
including their dependence on the masses of the two haloes involved and the time
interval being considered, and for formation times, including the dependence on halo
mass and formation epoch.

The analytical Press—Schechter mass function and its extension to halo lifetimes
and merger rates thus provide a very useful description of the growth of dark matter
haloes through hierarchical clustering, and should provide a valuable tool in studies of
the formation and evolution of galaxies and galaxy clusters.

Key words: galaxies: clustering - galaxies: evolution - galaxies: formation -
cosmology: theory — dark matter.

galaxies. Subsequent merging of the dark haloes leads to for-
mation of groups and clusters of galaxies bound together by a
common dark halo, and is accompanied by some merging of
the visible galaxies with each other. It is obviously of great

1 INTRODUCTION

In the standard cosmological picture, the mass density of the
Universe is dominated by collisionless dark matter, and

structure in this component forms by hierarchical gravi-
tational clustering starting from low-amplitude seed fluctu-
ations, with smaller objects collapsing first, and then merging
to form larger and larger objects. The haloes of dark matter
formed in this way, objects which are in approximate
dynamical equilibrium, form the gravitational potential wells
in which gas collects and forms stars to produce visible

* e-mail: cgl@thphys.ox.ac.uk
te-mail: Shaun.Cole@durham.ac.uk

interest to understand this process of structure formation via
merging in more detail. One approach, begun by Aarseth,
Gott & Turner (1979) and Efstathiou & Eastwood (1981), is
to calculate the non-linear evolution of the dark matter
numerically, using large N-body simulations. A second
approach, complementary to the first, is to develop appro-
ximate analytical descriptions that relate non-linear propert-
ies such as the mass distribution and merging probabilities of
collapsed objects to the initial spectrum of linear density
fluctuations from which they grew. These analytical descrip-
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tions must then be tested against the results of the numerical
simulations. If they work, they provide insight into the
numerical results, and provide the basis for simplified calcul-
ations and modelling which can cover a much wider range of
parameter space than is feasible with the numerical simul-
ations alone.

The analytical approach was pioneered by Press &
Schechter (1974, hereafter PS), who derived, rather heuristi-
cally, an expression for the mass spectrum of collapsed, vir-
ialized objects resulting, via dissipationless gravitational
clustering of initially cold matter, from initial density fluc-
tuations that obeyed Gaussian statistics. The basis of the
method is to derive a threshold value of the linear over-
density for collapse of spherical perturbations, and then cal-
culate the fraction of mass in the linear density field that is
above this threshold when smoothed on various scales. The
PS mass function formula has since been widely applied to a
variety of problems, including gravitational lensing by dark
haloes (Narayan & White 1988), abundance of clusters and
their influence on the cosmic microwave background via the
Sunyaev-Zel’dovich effect (Cole & Kaiser 1988), and galaxy
formation (Cole & Kaiser 1989; White & Frenk 1991). An
alternative derivation of the PS mass function was presented
by Bond et al. (1991, hereafter BCEK), who, by considering
the random walk of linear overdensity (at a fixed location) as
a function of smoothing scale, obtained a rigorous solution to
the problem of above-threshold regions lying inside other
above-threshold regions (the so-called ‘cloud-in-cloud’
problem). BCEK also showed how the derived mass function
depended on the filter used to define the spatial smoothing,
and that the standard PS formula in fact only results in the
case of ‘sharp k-space’ filtering, which is also the only case
for which exact analytical results can be obtained. (Related
approximate results were also obtained by Peacock &
Heavens 1990.) In addition, BCEK showed how to go
beyond a calculation of the mass function at a single time, in
order to derive the conditional mass function relating the halo
masses at two different times. Independently, Bower (1991)
extended the original method used by Press & Schechter
and derived an identical expression for the conditional mass
function. This extension to the PS theory was then taken up
by Lacey & Cole (1993, hereafter Paper I), who used the
conditional mass function to derive a range of results on the
merging of dark haloes. These included the instantaneous
merger rate as a function of the masses of both haloes
involved, and the distribution of formation and survival times
of haloes of a given mass identified at a given epoch, the for-
mation time being defined as the earlier epoch when the halo
mass was only half that at the identification epoch, and the
survival time as that time when the halo mass has grown to
twice that at the identification epoch. The expressions for
these depend on the initial linear fluctuations, through their
power spectrum, and on the background cosmology (density
parameter Q and cosmological constant A ). Preliminary
applications of these results were to constrain the value of Q
from the merging of galaxy clusters, and to estimate the rate
of accretion of satellites by the discs of spiral galaxies.

Kauffmann & White (1993) have extended the utility of
the analytical results of BCEK and Bower (1991) by present-
ing a Monte Carlo method of generating merger trees,
describing the formation history of haloes, that are consistent
with the analytical conditional mass function. This technique
has subsequently been utilized in studies of galaxy formation
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by Kauffmann, White & Guiderdoni (1993) and Kauffmann,
Guiderdoni & White (1994). An alternative Monte Carlo
implementation has also been used in studies of galaxy for-
mation in Cole et al. (1994).

An alternative analytical approach is to assume that
objects form from peaks in the initial density field. This has
been extensively used to study clustering of galaxies and
clusters (Peacock & Heavens 1985; Bardeen et al. 1986), but
has been less used in calculating mass functions because of
the problems of dealing properly with peaks that lie inside
other peaks, and of identifying what mass object forms from
a given size peak (e.g. Bond 1988). Bond & Myers (1993a)
have recently developed a new method which combines
aspects of the Press-Schechter and peaks methods, but this
requires one to generate and analyse Monte Carlo realiza-
tions of the linear density field, and so is much more compli-
cated to apply, although it is still simpler than doing an
N-body simulation.

Our aim in this paper is to test the analytical results for the
merging of dark haloes derived in Paper I against a set of
large N-body simulations. Specifically, we test the formulae
for merger probabilities as a function of the masses of the
haloes involved and of the difference in cosmic epochs, and
for the distribution of formation epochs of haloes. We also
revisit the question of how well the PS mass function itself
works compared to simulations. The latter question has been
investigated previously, notably by Efstathiou et al. (1988,
hereafter EFWD) for a set of self-similar models with power-
law initial power spectra and Q=1, and by Efstathiou &
Rees (1988), White, Efstathiou & Frenk (1993) and Bond &
Myers (1993b) for cold dark matter (CDM) models, who all
found reasonably good agreement. BCEK tested the con-
ditional mass function formulae against EFWD’s simu-
lations, and found encouraging results, but the size of their
simulations (323 particles) did not allow very detailed com-
parison. In this paper, we address these questions using
1283=2x10° particle N-body simulations of self-similar
models, with Q=1 and initial power spectra P(k)« k",
n= —2, —1, 0. With this large number of particles, it is pos-
sible to make fairly detailed tests of the merger formulae.
There has been some discussion of what is the best filter to
use with the standard PS mass function formula, and whether
improved results can be obtained by choosing a threshold
linear overdensity different from that of the simple spherical
collapse model (Efstathiou & Rees 1988; Carlberg & Couch-
man 1989), and we investigate this also. Kauffmann & White
(1993) made a qualitative comparison of some of the pro-
perties of the merger histories from their Monte Carlo
method with those from a CDM simulation, and argued that
there was reasonable agreement.

An important question that arises when comparing
analytical predictions for mass functions, merger rates etc. of
dark haloes with the corresponding quantities in N-body
simulations is how best to identify the haloes in the
simulations. Given that the haloes found in simulations are
neither completely isolated nor exactly in virial equilibrium,
there seems to be no unique way to do this. Much work has
been based on the percolation or ‘friends-of-friends’
algorithm (Davis et al. 1985, hereafter DEFW), in which
particles are linked together with other particles into a group
if the distance to the nearest group member is less than a
certain fraction (usually taken to be 0.2) of the mean inter-
particle separation. However, other group-finding schemes
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have also been used (see, for example, Warren et al. 1992;
Bond & Myers 1993b). It is important to know how much
the comparison with analytical results depends on the group-
finding scheme employed, so we will investigate the effect of
varying the linking length in the friends-of-friends scheme,
and also use an alternative method based on finding spheres
of particles of a certain overdensity.

The plan of the paper is as follows. In Section 2, we
review the analytical results on merging derived in Paper L. In
Section 3 we describe the N-body simulations, and in Section
4 we describe our group-finding schemes. In Section 5 we
compare the N-body mass functions with the PS formula.
The following two sections test the predictions for merging
against the simulations: merger probabilities as a function of
mass in Section 6, and formation epochs in Section 7. We
present our conclusions in Section 8.

2 REVIEW OF ANALYTICAL MERGER
RESULTS

2.1 Spatial filtering and random trajectories

In this section, we review the analytical results on the
merging of dark haloes derived in Paper I, BCEK and Bower
(1991). Central to the approach is spatial filtering of the
linear density field. The initial conditions for structure forma-
tion are specified as a Gaussian random density field
o(x)= p(x)/o—1, having some power spectrum P(k), where
0 is the mean density. This field is smoothed by convolving it
with spherically symmetric filters Wg(r) of various radii R,
having Fourier representations W(k):

Wy(k) =J Wr(|x]) exp(—ik-x)d3x. (2.1)

The variance of the field after smoothing with a filter is
related to the power spectrum by

©

JZ(R)E<62>R=J W2(k)P(k)4nk? dk. (2.2)

0

We list below the filters that we will be using in this paper,
and their Fourier representations. We also give the ‘natural
volume’ V; that is associated with a filter of radius R, defined
to be the integral of Wx(r)/ Wg(0) over all space.

(i) Top Hat (TH):

_|3/(4=R7) r<Rq,
Wilr) {0 > Ry, (2.3)
v‘v,e<k>=ﬁ [sin(kRy )~ (kRy ) cos(kRy ), (2.4)
Vo=(4/3) R3. (2.5)
(ii) Gaussian(G):

1 2
Wi(r) =(2—n)mEg exp(—r*/2R%), (2.6)
Wi(k)=exp(— k*/R%/2), (2.7)
Vo=(2n)2 R}, (2.8)

(iii) Sharp k-space (SK):

We(r) = [sin(r/Rs)—(r/Rs) cos(r/Rs)], (2.9)
Tr
1 k<R
Wi (k)= 0 k>1/R. (2.10)
Ve =6n’R3. (2.11)

The filters are normalized according to the condition
[& We(r)dmr? dr= Wg(k=0)=1. The natural volume of a
filter is thus V;=1/Wg(r=0). (In the case of the sharp k-
space filter, the volume integrals are a little ill-defined if done
in real space, since the integral [}, Wg(r)4mr? dr actually oscil-
lates around 1 as r— . If desired, this minor problem can be
cured by multiplying Wg(r) by exp(— ar) before doing the
integral, and taking the limit ¢~ 0 afterwards.) The natural
mass under a filter is then defined as M;=pV;.

When the density fluctuations are small (0 < 1), they grow
according to linear perturbation theory, d(x, ¢)< D(¢), where
the linear growth factor D(¢) depends on the background
cosmological model; for Q=1, D(t)e a(t)< t?3, a(t) being
the cosmic expansion factor. (We are assuming that only the
growing mode of linear perturbation theory is present.) The
non-linear evolution can be calculated analytically for
spherical perturbations (e.g. Peebles (1980); Paper I); for a
uniform overdense spherical fluctuation, the collapse time
depends on its initial linear overdensity. It is convenient to
work in terms of the initial density field extrapolated
according to linear theory to some fixed reference epoch ¢,
for which we also take a(t,)= 1; from now on, this is what we
will mean by 6(x). In terms of this extrapolated 9, a spherical
perturbation of mean overdensity J collapses at time ¢ if
0 = d,(t), where, for Q =1, we have the usual result

O(1)= 0o/ a(t) = O (o1,
8e0=3(12m)%3/20 ~ 1.69. (2.12)

[The generalization of this for Q <1 is derived in Paper I;
note that the second line of equation (2.1) of that paper
contains a typographical error - the factor (2/20) should be
(3/20).]

The analytical formulae we now present for the halo mass
functions, conditional mass functions and lifetimes are
expressed in terms of this threshold d.(#), and o(M), the
variance of the smoothed linear density field as a function of
the smoothing mass.

2.2 Mass function

The fraction of mass in haloes with mass M, at time ¢, per
interval d M, originally derived by Press & Schechter (1974),
is (Paper I, equation 2.10) .

daf 8(1) |do’(M) [_ 8e(tf
2

am M t>=(2n)”203(M) | dm | o(M)

]. (2.13)

o(M) is assumed to decline monotonically with increasing M.
[To make the correspondence with the equations in Paper I,
note that there we used the notation S=0%(M), w=35.(¢).]
Thus, the comoving number density of haloes of mass M
present at time ¢, per dM, is
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dn an t)=(2)”2 0

() [din o S.(1)
dM n) M’ o(M 2

M) |dIn M| o az(M)]’ (2.14)

where p is now the mean density at the reference epoch .
By defining v = 0(¢)/ (M), (2.13) can be rewritten as

d 2
A,

which is independent of the form of the fluctuation spectrum.

(2.15)

2.3 Conditional mass function and merger probability

The conditional probability for a mass element to be part of
a halo of mass M, at time ¢,, given that it is part of a larger
halo of mass M,> M, at a later time ¢, > ¢,, is found by
considering two different thresholds, J.(¢,) and 6 (z,). The
result, derived somewhat differently by BCEK and Bower
(1991), for the conditional mass fraction per interval dM, is
(Paper I, equation 2.15)

(6cl _6c2) tdof‘
(27)" (0% = 02" |dM, |

X exp[ (6("‘ _ 2))}

where 0,=0(M,), 0,=0(M,), 6., =0.(t,) and O, =d.(t,).
The only assumption made here about the function d.(¢) is
that it monotonically decreases with increasing ¢. The reverse
conditional probability, for M, given M|, is (Paper I, equa-
tion 2.16)

ﬁl‘(Mntlle,tﬁ:

(2.16)

df 1 0c2(0c1 — 02 0% n
— (M M =
sz( 2 LIM, 1) (2:1:)]/2 o 05(0%_ ag)

’d02’ ex [_(6&0%"6“0%)2
\sz| 20105(01—03) ]

(2.17)

This is obviously the same as the probability for a halo of
mass M, at ¢, to be incorporated into a halo of mass M, > M,
at t,>¢,. Thus, if we set M, =M, +AM and t,=¢ +At in
the above formula, we get the probability for a halo to gain
mass AM by merging in time At. Taking the limit Az~ 0, one
obtains the instantaneous merger rate as a function of M,
and AM (equation 2.18 of Paper I).

2.4 Formation times

Suppose one identifies a halo of mass M, at time £,. At an
earlier time, one can identify the progenitors of this halo. We
define the formation time of the halo identified at epoch ¢, as
the earliest time #; < ¢, at which it has a progenitor of mass M,
at least half of M,. We find the cumulative probability
distribution for ¢ (equation 2.26 of Paper I):

MM, df

P(t;,<t,|M,, t M, t,|M,,t,)dM,.
(t l| 2 2) J'M/le dMl( 1 1| 2 2) 1

(2.18)

The differential probability distribution for ¢ is then given by
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dp "M,
— (| My, t;)= —
dt,»( (| My, t,) J'Ml/2 M,

dMm,.

o far

(M,, | M5, fz)}
(2.19)

We noted in Paper I that the expression corresponding to
equation (2.19) actually leads to a slight mathematical in-
consistency in some cases: for power-law power spectra
P(k)< k" with n>0, the probability density for f goes
slightly negative for small ¢, —¢. In Paper I, we also derived
formation time distributions based on a Monte Carlo
method, which do not have the problem of negative prob-
ability density. These distributions have similar shapes to the
analytical ones, but with the mean shifted. We will see in
Section 7 that the analytical distribution gives a remarkably
good fit to the N-body results.

2.5 Self-similar models

The analytical results presented above make no special
assumptions about the functions o(M) and 6_(¢), except that
they are monotonic. In testing these results against simu-
lations, however, we will focus on self-similar models, in
which the density parameter Q=1, so that there is no
characteristic time in the expansion of the Universe, and in
which the initial density fluctuations have a scale-free
spectrum, P(k)e« k" In this case, the evolution of structure
should be self-similar in time. This has some advantages, to
be discussed in Section 3. From equation (2.2), we obtain

o(M)oc M ~tn*3)/6 in general. For o to decline with increasing
M, we require n > — 3, which is just a condition for structure
to grow hierarchically, with small objects collapsing first and
then merging to form larger objects. For the top hat filter, the
integral in equation (2.2) only converges for n < 1. We will be
considering N-body models with n= —2, — 1, 0.

For Q =1, density fluctuations grow as D(¢)x< a{f) ¢** in
linear theory, so that the rms fluctuation on comoving scale
k ~!is roughly Jarmk®P(k)a(t). Thus we can define a charac-
teristic non-linear wavenumber k(¢) by

Anki(t) Plks(t)] a(e)?=1. (2.20)

At time ¢, fluctuations are of order unity and are starting to
collapse on a comoving lengthscale ~ k4(#)7!. In a self-
similar model, this should be the only characteristic length-
scale for structure.

In our analytical expressions for mass functions, merger
probabilities etc., it is convenient to define a filter-dependent
characteristic mass-scale M () by

o[ My ()] = 6,(1), (2.21)

where 6,(¢)=0./a(t) for Q=1. The mass My is related to
the filter-independent quantity k by

6/(n+3) —
My(t)=; (&(_nz) £

0w KU’ (2.22)

where o is the mean density at the reference epoch when
a=1. y; relates the volume of a filter to its radius through
Vi=v:R} (cf. Section 2.1), and ¢;(n), which enters through
the relation (2.2) between o(R) and P(k), is defined by

cf(n)=r W _, (k) k"*2dk. (2.23)
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For the filters we are using, ¢(—2)=1.373, 0.941, 1.000;
¢(—1)=1.500, 0.707, 0.707; and ¢(0)=2.170, 0.666,
0.577, for TH, G and SK filters respectively. From equations
(2.20) and (2.22), the characteristic mass grows as
My (t)oc a®"+3) The mass function (2.13) can then be re-

written as
df 2 1/2 n+3 M (n+3)/6
dinM \n) | 6 /\Mx

y 1 M (n+3)/3
exp 5 M* B

in which form the mass and time only appear in the combina-
tion M/M,(¢). Similarly, the merger probability (2.17) can be
written as a distribution for M,/M, depending on M,/My(a,)
and a,/a,, and the formation time distribution (2.19) can be
written as a distribution for a;/a, depending on M,/ My(a,).

(2.24)

2.6 Choice of filtering and collapse threshold

The BCEK derivations of the PS mass function and of the
conditional mass function are based on sharp k-space filter-
ing. On the other hand, the original, more heuristic, deriva-
tion by PS themselves assumed top hat filtering, as did
Bower’s derivation of the conditional mass function. Most
applications of the PS formula have followed the latter
approach and used the o(M) relation for top hat filtering
[with M= (47/3)p R3], but some have instead used o(M) for
Gaussian filtering [with M =(25)’?0R}] (e.g. Efstathiou &
Rees 1988). Even for a given choice of filter, one can obtain
different o(M) relations simply by choosing a different
mass-radius relation from the ‘natural’ one discussed in
Section 2.1; after all, it is not obvious how the mass of a
collapsed object is related to the profile of the filter used
to identify it. BCEK suggested calculating the filter mass
for a general filter from M =(4x/3)pR3, where the ‘equiva-
lent top hat’ radius R is defined through the relation
o(R) = o(Ry), on the grounds that the collapse threshold
0.(7) is also calculated for a top hat spherical perturbation.
For power-law power spectra, this requires making y; in
equation (2.22) a function of spectral index as well as filter
type, while for a general P(k) it must be a function of R. This
procedure is equivalent to using the o( M) relation for top hat
filtering in formulae like (2.3) and (2.17), even if these
formulae are derived for sharp k-space filtering.

In this paper, we adopt an empirical approach to the
choice of filter and M(R) relation. We will compare the
results of N-body simulations to the formulae using top hat,
Gaussian and sharp k-space filtering for o(R). We assume a
mass-radius relation M =y;0R?, with y; a constant depend-
ing on the filter type but independent of the power-spectrum,
but will consider values of y; that are different from the
‘natural’ ones given in Section 2.1.

A related issue concerns the choice of collapse threshold,
which for Q=1 boils down to a choice for d, in equation
(2.12). While the spherical collapse model gives an un-
ambiguous answet, one can take the view that, since real
collapses have non-top-hat and non-spherical density pro-
files, J, should be regarded as a phenomenological
parameter, chosen to give the best fit to N-body results (e.g.
Bond & Myers 1993Db). Since the PS mass function and other

formulae depend on y; and d, only through M, (equation
2.22), there is a degeneracy between these two parameters
for any given spectral index #, but this degeneracy is lifted as
soon as one considers results for different n. The choice of
0.0 and y; will be considered in relation to the simulations in
Section 5.

3 N-BODY SIMULATIONS

The simulations were performed using the high-resolution
particle-particle-particle-mesh (P3M) code of Efstathiou et
al. (1985) (EDFW) with 128%=2x 10° particles. The long-
range force was computed on a 256° mesh, while the soften-
ing parameter for the short-range force was chosen to be
7=0.2(L/256), where L is the size of the (periodic) compu-
tational box. This corresponds to the interparticle force
falling to half of its point-mass value at a separation
r=0.4n=L/3200. Initial positions and velocities were
generated by displacing particles from a uniform 1283 grid
according to the Zel'dovich approximation, assuming the
linear power spectrum and Gaussian statistics. We ran one
simulation for each of n= -2, —1,0. For n=—1and n=0,
the initial amplitude of the power spectrum was chosen to
equal the white noise level at the Nyquist frequency of the
particle grid; for n= —2, this choice was found to lead to
large departures from self-similar behaviour in the derived
mass functions and related quantities, so this simulation was
instead started when the amplitude was smaller by a factor of
0.4. We adopted the convention of normalizing the expan-
sion factor a to 1 when the variance of the linear theory
power spectrum in a top hat sphere of radius L/32 was 1.
With this choice, the initial expansion factors were a;=0.2,
0.15, 0.06, respectively, for n=—2, —1, 0. The initial rms
1D displacements of the particles were approximately 0.9,
0.5 and 0.25 in units of the particle grid spacing. The time
integration was performed using the variable p=a? with
a=2/(n+3), and a constant stepsize Ap/p;= a(256n/L)*?/*
=0.023a (EDFW).

For each simulation we output the positions and velocities
of all the particles at many epochs. The spacing of these
outputs was chosen so_that the characteristic mass, My,
increased by a factor J2 between each successive output,
which corresponds to an increase of a factor of 2("*+3/12 jn
the expansion factor a. The final expansion factors for the
simulations were determined mainly by the computer
resources available; for the later stages, the CPU time was
dominated by the short-range force calculation by a large
factor. The simulations were stopped at expansion factors
a=1.26,2.00 and 1.68 for n= -2, —1 and 0, respectively.
This gave us between 20 and 24 useful outputs from each
simulation.

Self-similar models have two advantages from the point of
view of testing our analytical predictions against simulations.
(i) We can check whether the simulations obey the self-
similar scaling that physically they should. In particular, this
allows us to test whether the simulations were started at a
small enough expansion factor. We can also delineate the
range of masses of virialized objects for which the simu-
lations are reliable, bearing in mind the effects of particle
discreteness and force resolution on small scales, and missing
long-wavelength modes on scales larger than the box. (ii) By
using the self-similar scaling, we can straightforwardly
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combine the results from different output times to reduce the
Poisson fluctuations on the N-body results due to the finite
number of haloes in the box. These factors, and the simple
way to test for dependence on the form of the initial
spectrum, were what motivated us to look at self-similar
models rather than more physically inspired models such as
CDM models.

4 GROUP-FINDING IN THE SIMULATIONS
4.1 Overview

We wish to obtain the properties of dark matter haloes from
the simulations in order to compare them with our analytical
results. Simple theoretical calculations idealize dark haloes
as isolated spherical objects in dynamical equilibrium, but
the objects found in simulations with Q=1 are neither
isolated nor in complete dynamical equilibrium, because
haloes continue to grow by accreting or merging with other
haloes on a time-scale comparable to the expansion time,
which is also comparable to their internal dynamical time-
scales. (In a universe with Q <1, on the other hand, one
expects the conditions of isolation and dynamical equi-
librium to be much better satisfied.) Nor are real haloes
spherical. The issue of how to identify the groups of particles
in the simulations that one calls dark haloes is therefore not
completely straightforward, and a variety of schemes have
been used by different authors (e.g. DEFW; Barnes &
Efstathiou 1987; Warren et al. 1992; Bond & Myers 1993b).
In order to give some idea of how sensitive the comparisons
are to the group-finding method employed, we will present
results for two different schemes, namely percolation and a
spherical overdensity method. Both are based on particle
positions, making no use of the velocity information in the
simulations. Both methods effectively involve choosing a
density threshold to define groups (a local density in one case
and a mean density inside a sphere in the other), but do not
build in any preferred length- or mass-scales. The latter is
important if one wishes to study properties like the distribu-
tion of halo masses. A fuller discussion and comparison of
the internal properties of the haloes found by using these
different schemes and parameters, for the different initial
power spectra, will be given by Cole & Lacey (1994, in
preparation).

4.2 Friends-of-friends (FOF) groups

The percolation method is the standard friends-of-friends
algorithm (hereafter FOF) of DEFW, which has been
widely used. Groups are defined by linking together all pairs
of particles with separation less than bn~!/3, 7 being the
mean particle density. This defines groups bounded approxi-
mately by a surface of constant local density, o/0 = 3/(2nb?).
The value usually used for the dimensionless linking length is
b=0.2 (e.g. Frenk et al. 1988), which corresponds to a
density threshold p/o=60. For a spherical halo with a
density profile o(r)ec r~2, this local density threshold corre-
sponds to a mean overdensity {0)/o = 180, which is close to
the value 18n2= 178 for a recently virialized object pre-
dicted for a top hat spherical collapse (e.g. Peebles 1980;
Paper I). It has been argued that the choice b=0.2 approxi-
mately delineates between objects that are virialized and
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objects that are still collapsing in their outer parts, but in our
own investigations (Cole & Lacey 1994, in preparation), we
find that the closeness to global virial equilibrium of N-body
haloes depends rather weakly on the value of b, so that this
criterion does not strongly select a value for b. We will make
comparisons with FOF groups for b=0.15, 0.2 and 0.3,
corresponding to local overdensities of 140, 60 and 18,
respectively. We will use the abbreviation FOF(b) for groups
identified using FOF with linking parameter b.

4.3 Spherical overdensity (SO) groups

The second method we apply, which we call spherical over-
density (SO), is based on finding spherical regions in a
simulation having a certain mean overdensity, which we
denote by x =(0)/p. We first calculate a local density for
each particle by finding the distance r, to its Nth nearest
neighbour, and define the density as 3(N+1)/(4mr3).
Particles are sorted by density. The highest density particle is
taken as the candidate centre for the first sphere. A sphere is
grown around this centre, with the radius being increased
until the mean overdensity first falls below the value «. (The
sphere must contain at least two particles.) The centre of
mass of the particles in this sphere is then taken as a new
centre, and the process of growing a sphere of the specified
overdensity repeated. This process is iterated until the shift
in the centre between successive iterations falls below ern~!/3.
The particles in the sphere are all labelled as belonging to the
same group, and removed from the list of particles con-
sidered by the group-finder. Then one moves on to the next
highest density particle that is not already in a group and
repeats the process of finding an overdense sphere, including
iteration of the centre. Finally, after all the groups have been
found, any groups that lie inside larger groups are merged
with the larger group, according to the following procedure.
Each group is considered as a sphere of mean overdensity x,
based on its actual mass, and centred on its actual centre of
mass. Starting with the largest sphere, any smaller sphere
whose centre is inside the larger sphere is merged with that
sphere (but the assumed radius of the larger sphere is not
changed). This is then repeated for the next largest remaining
sphere, and so on down in mass. We will use the abbreviation
SO(x) for SO groups identified at overdensity «.

We will present comparisons for SO groups with spherical
overdensity x =180, chosen to agree with the spherical
collapse model. For the local density estimate, we used
N=10, but the results were not especially sensitive to this.
For the convergence of the group centres, we found e=0.1
to be adequate. With these parameters, an average of fewer
than 0.1 iterations per group were required, and the fraction
of particles involved in merging small groups into large ones
was less than 1073, We also experimented with defining the
initial list of centres for growing spheres from particles
ranked either by gravitational potential (deepest potential
first) or by the magnitude of the acceleration (highest
acceleration first). The potential and acceleration were
calculated for each particle using a modified version of the
P3M code, with the same grid and softening parameters as
for the original simulation. The groups found starting from
acceleration or potential centres were almost identical to
those found starting from density centres, and the mass
functions agreed to within a few per cent. A fuller discussion
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of the method will be given in Cole & Lacey (1994, in
preparation). We have used the method based on density
centres in this paper since it is more straightforward.

Our spherical overdensity algorithm has many similarities
to the method used by Warren et al. (1992), and to the
‘smooth particle overdensity’ method of Bond & Myers
(1993b). The Warren et al. method grows spheres of
specified overdensity around centres that are particle
positions ranked by gravitational acceleration, and merges
small haloes that are inside larger ones, but does not iterate
the positions of the centres. The Bond & Myers method
grows spheres of a given overdensity around centres that are
chosen initially to be positions of particles ranked by local
density, and then iterates each sphere until the centre of mass
converges. However, the volume of a group, used in defining
its mean density, is defined by calculating a volume for each
particle based on its local density, and summing these over
all particles within the sphere to obtain the total volume,
rather than as the volume of the sphere itself.

4.4 Comparison of methods

The percolation method has the advantage that it is simple,
relatively fast, and does not make any assumption about the
geometry of the groups. However, some (a definite minority)
of the groups it selects are formed of two or more dense
lumps separated by low-density bridges, as has been noted
by previous authors. These groups seem rather unphysical.
The spherical overdensity method avoids this problem,
instead producing groups concentrated around a single
centre, but, on the other hand, it tends to chop off the outer
portions of ellipsoidal haloes. It is also more complicated and
more time-consuming to run. It is not clear which method
should be considered ‘best’, so it is interesting to compare
results obtained with both.

5 MASS FUNCTIONS IN THE SIMULATIONS
5.1 Tests for self-similarity

Fig. 1 shows the N-body mass functions for all output times
for all three values of the spectral index n. The haloes were
found using the friends-of-friends method with 5=0.2, and
the mass function for each output time rescaled to a distribu-
tion in M/M,(¢), with My(¢)e a(£)*!"*3 computed using a
top hat filter with the standard choices y;=4x/3 and
O = 1.69. Scaled in this way, the mass functions for differ-
ent times should be identical, as a simple consequence of
self-similarity, and it can be seen that the simulations con-
form to this expectation very well. We have excluded from
the plots haloes having N<N,;, =20 or N> N, =2x10*
particles. Haloes containing only a few particles are not rep-
resented accurately by the simulations, and cause noticeable
departures from self-similarity if included, while the propert-
ies of haloes having masses approaching that of the box are
affected by the absence from the initial conditions of modes
with wavelength exceeding the size of the box. For our simul-
ations, the N,,,, cut-off in fact makes little difference, because
My is still much smaller than the mass of the box when the
simulations are halted.

Rigorously, self-similar clustering solutions only exist for
spectral indices in the range —1<n<1, since outside this
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Figure 1. Mass functions for different output times, for groups
identified using FOF(0.2) and masses rescaled to be in units of the
characteristic mass M(¢). df/d In Mis the fraction of mass in haloes
per logarithmic interval in halo mass. Each panel shows the results
for a single N-body run (n= —2, — 1, 0), with the mass functions for
different output times plotted as solid lines, and the Press-Schechter
prediction (equation 2.24) for top hat filtering and 6., =1.69 as a
dashed line.
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range, the rms peculiar velocity receives divergent contribu-
tions from either large or small scales (Davis & Peebles
1977). For n< —1, the problem arises from the very long
wavelength fluctuations, which contribute negligibly to the
rms overdensity, but produce large-scale coherent velocities.
This should not affect the collapse of structure on small
scales, so small-scale structure is still expected to evolve in a
self-similar way. This expectation is borne out by the scaling
of the mass functions, which works as well for the n= —2
models as for n= —1or 0.

Since the scaling of the mass functions in the simulations is
consistent with self-similarity, we average the results for all
output times together to increase their precision, weighting
the contribution of df/d In M in each bin in M/M in propor-
tion to the number of haloes in that bin for each output time.
We use these averaged mass functions in the comparisons
that follow.
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5.2 Choice of filter and density threshold

We now consider the choice of filter and collapse threshold
in the Press—Schechter mass function (cf. Section 2.6). The
PS prediction is that, when the distribution in mass is con-
verted to a distribution in v=9_(¢)/o(M), it should have a
universal form (equation 2.15), independent of the power
spectrum. However, o(M), and thus v, depends on the filter
used. For self-similar models, v=[M/My(2)["*3/, and differ-
ent choices of filter lead to different values of My, according
to equation (2.22). For a given filter, the value of M, also
depends on the parameters J , and v; (recall that the filter
mass is related to the radius by M, = y;0R3?).

We first test how well the N-body mass functions for dif-
ferent initial power spectra agree with each other when
expressed as functions of v. Fig. 2 shows the mass functions
of FOF(0.2) groups in our self-similar models, converted to
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Figure 2. Averaged mass functions for the different N-body models, compared to the Press-Schechter mass function using different filters.
df/d In vis the fraction of mass per logarithmic interval in v=(M/M,)" +3. Groups were identified using FOF(0.2). Each panel shows results
for a different choice of filter: top hat (TH), Gaussian (G) and sharp k-space (SK) respectively. For Gaussian filtering, we show results for two
different values of y;, which relates the filter mass to filter radius through M; = y;0R}. Each panel shows the N-body mass functions for n= —2
(long-dashed line), n= —1 (solid line) and n =0 (short-dashed line), where these have been averaged over all output times. Also shown is the
standard Press-Schechter result (equation 2.15) (dash-dotted line), and the PS curve shifted in v to give the best fit to the N-body results
(dotted line). Shifting in v is equivalent to using a different value for d,, from the standard one. The values of y; assumed, and of d, for the

best-fitting PS curves, are shown in the lower left corner of each plot.
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distributions in v, for three different choices of filter: top hat
(TH), Gaussian (G) or sharp k-space (SK). The relative place-
ment of the N-body curves for different » depends on y;, but
is independent of J,, which just causes a uniform shift of all
the curves by the same amount. For top hat and sharp k-
space filtering, we have used the ‘natural’ values of y; from
Section 2.1, while, for Gaussian filtering, we have used both
the natural value and one 2.5 times larger. We have assumed
d,=1.69. It can be seen that, for top hat and sharp k-space
filtering, the N-body mass functions df/d In v for different n
agree fairly well using the natural values for y; (47t/3 and 672,
respectively), so we have not considered different values. For
Gaussian filtering, on the other hand, there is a large spread
between the N-body curves for different n when y; is taken to
be its natural value (27)*?2, but good agreement if the filter
mass is increased by a factor of 2.5. Previous authors who
have used Gaussian filtering in conjunction with the PS for-
mula (e.g. Efstathiou & Rees 1988; Carlberg & Couchman
1989) all appear to have assumed y; =(25)*/2 The effect of
the latter choice is that the best-fitting value for d, depends
on the shape of the power spectrum. These results concern-
ing the best values for y; for different filters were found to
apply equally well for the other group identification schemes
we tested (friends-of-friends with 5=0.15 and b=0.3, and
spherical overdensity with x = 180).

Having chosen optimal values for y;, a second question is:
how well does the PS formula actually fit the N-body results,
and what is the best value to use for d,? In Fig. 2, which
assumes 0., = 1.69, the standard PS prediction (equation
2.15) is shown by a dot-dashed curve in each panel. The PS
and N-body curves have very similar shapes, but it is appar-
ent that they could be brought into even closer agreement by
shifting the N-body curves horizontally, which corresponds
to changing J, (v« ). For each filter, we have estimated
by eye what value of d gives the best fit of PS with N-body
mass functions. The best-fitting PS curve is shown by a dot-
ted line in each panel, and the corresponding value of ,, dis-
played. (Rather than replot the N-body curves with the new
value of J,, we have shifted the PS curve inversely, as
v dyl.) For Gaussian filtering with the non-optimal
y;=(2m)*?, the best-fitting ., depends strongly on the
power spectrum, so we have fitted the n= —1 results in the
middle of our range of n. Using the optimal y; values, it can
be seen that the best-fitting J,, values for FOF(0.2) groups
differ by less than 20 per cent from the canonical d,,=1.69
for each of the three filters considered. When these best-
fitting values are used, the PS formula fits the N-body mass
functions extremely well, with an accuracy of better than 30
per cent over the range 0.3 < v < 3. However, in all cases the
PS formula systematically overestimates the abundance of
low-mass haloes (v S 1) compared with the simulations.

These results on J, are reasonably consistent with those
found by previous authors. EFWD found a reasonable fit
to FOF(0.2) groups in self-similar models for top hat fil-
tering with d,,=1.68, while Efstathiou & Rees (1988)
and Carlberg & Couchman (1989) found 6.,,=1.33 and
0.0 = 1.44, respectively, for FOF(0.2) groups in CDM
models using Gaussian filtering with y;=(2x)*/? (note that
the CDM power spectrum has effective spectral index
dIn P(k)/dIn k= —2 on the range of scales considered).
Bond & Myers (1993b) find d.,,=1.58 from their CDM
simulations, but this is using their own group-finding scheme,

which produces somewhat more massive groups than
FOF(0.2), and correspondingly requires a smaller d,.

5.3 Mass functions with different group-finding

It is important to investigate how sensitive the results on
mass functions are to the group-finding method employed.
We have repeated the previous analysis for friends-of-friends
with two other values of the linking parameter, b=0.15 and
0.3, and for the spherical overdensity method with over-
density x = 180. Fig. 3 shows the results for top hat filtering
with v,=4m/3 and J,, =1.69. The dot-dashed curves in all
the panels are identical, and are the standard PS result, while
the dotted curves are the shifted PS curves that seem to give
the best fits, the corresponding best-fitting value of J,, being
given in each panel. Comparing the N-body mass functions
with different group finders, the plots show the expected
result that halo masses are smaller for FOF(0.15) than for
FOF(0.2), and larger for FOF(0.3). SO(180) haloes are also
on average smaller than for FOF(0.2), but give very similar
mass functions to FOF(0.15). The best-fitting values of d.,
vary with group finder accordingly, larger halo masses
requiring a smaller 0, and vice versa, as shown in the figure.
With TH filtering, all the group finders give reasonable fits to
PS (with different J_), though in each case, when the PS
formula is fitted at the high-mass end, it predicts too many
low-mass haloes, the discrepancy being largest for
FOF(0.15) and SO(180). FOF(0.3) groups result in the best
fit to PS overall, when J, is allowed to vary. For the
canonical choice d,,=1.69, FOF(0.2) and FOF(0.3) groups
agree approximately equally well with PS. For Gaussian and
sharp k-space filtering, with y; = 2.5 (2)*/? and 672, respec-
tively, the fits of the PS formula to the N-body mass functions
for the different group finders are about as good as for top
hat filtering when d, is allowed to vary.

5.4 Discussion

To summarize the results of this section: at least for power-
law initial power spectra, P(k)oc k" with —2<n<0, there
seems to be little to choose between top hat, Gaussian or
sharp k-space filtering in the Press—Schechter mass function,
provided that the factor y; is chosen appropriately. For top
hat and sharp k-space filtering, the natural values (47/3 and
6%, respectively) work well, while, for Gaussian filtering,
a value of about 2.5(2m)*? seems best. The N-body mass
functions change with changes in the group-finding method
or in its parameters, but this can to a considerable extent be
compensated for in the PS formula by adjusting J,. If d is
instead fixed at the value 1.69 from the spherical collapse
model, then, for FOF groups, a value of b = 0.2-0.3 seems to
give the best agreement with PS. We caution, however, that
these conclusions may be changed for more general power
spectra; in particular, there may be a greater difference
between the top hat filter, which cuts off only as Wp(k)ec k=2
at short wavelengths, and the Gaussian or sharp k-space
filters, which both cut off much more sharply. In the
remainder of this paper, in looking at merger properties, we
will concentrate on b=0.2 FOF groups, using top hat filter-
ing with y;=4/3, since these choices are the most standard.
For simplicity, we will use the canonical value J.,=1.69 for
the collapse threshold, since this is in any case close to the
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Figure 3. Effects on N-body mass functions of different group-finding schemes. Each panel shows the mass functions for n= -2, — 1, 0 (long-
dashed, solid and short-dashed lines respectively), for a different choice of group-finding scheme and parameters. The first three panels show
friends-of-friends with 5=0.15, 0.2 and 0.3, respectively, while the last shows the spherical overdensity method with x = 180. In each panel, the
N-body mass functions have been averaged over output times, and converted to distributions in v assuming top hat filtering with y; = 4t/3 and
0., = 1.69. Also shown in each panel is the standard Press-Schechter result (equation 2.15) (dash-dotted line), and the PS curve shifted in v to
give the best fit to the N-body results (dotted line). The values of d, corresponding to the best-fitting PS curves are shown in the lower left

corner of each plot.

best fit for the other choices made. The PS mass function
then fits our N-body results within a factor of 2 or better for
03svs3.

6 MERGER RATES

The conditional mass function, df/d In AM |, ,..,» obtained
from (2.17), describes the probability that a halo of mass M,
at the epoch when the expansion factor equals a, will accrete
mass AM= M, — M, to become a halo of mass M, at expan-
sion factor a, =a, +Aa. In the limit of Aa— 0 this yields the
instantaneous merger rate at expansion factor a, of haloes of
mass M, with haloes of mass AM. Here we compare the con-
ditional mass function (2.17) for both small and large time
intervals At with estimates made directly from our N-body
simulations.

Once we have constructed group catalogues for each
output time of our simulations using one of the group-finding
algorithms discussed in Section 4, it is an easy matter to

construct the conditional mass function for any pair of
output times. For each group of mass M, identified at the
epoch when the expansion factor equals a,, we determine
which halo it has become incorporated in at expansion factor
a, by finding the halo at this later epoch that contains the
largest fraction of the particles from the original halo.
Defining the mass of this new halo as M,, we construct a joint
histogram of M, and AM =M, —M,. The scale-free nature
of the initial conditions of our simulations implies that the
form of these histograms when expressed in units of M, /M,
[My given by (2.21) at a=a,] and AM/M, should depend
only on Aa/a,=(a, —a,)/a,. Consequently, the histograms
from different pairs of output times, but with the same values
of Aa/a,, can be averaged to yield more accurate estimates
of the conditional mass function. For each pair of output
times we weight the contribution to df/d In AM|,, A, in
each bin of AM/M, in proportion to the number of haloes in
that bin. We estimate Poisson error bars for the conditional
mass function from the number of haloes, N,,,, in each mass

in»
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Figure 4. A comparison of the analytical conditional mass functions (2.17) (dashed lines

0
log(AM/Ml)

) with those of FOF(0.2) groups in the n= —2

simulation (solid lines). Top hat (TH) smoothing and the standard 6, =1.69 were used to define M,.. We have used only haloes with N, >20

and AN>20. An indication of the magnitudes of the statistical er
calculated as described in the text. The top row of plots shows resul

rors in these estimates is given by the Poisson error bars, which are
Its for an interval Aa/a, =0.06, which equals that between consecutive

outputs of our n = —2 simulation, i.e. between which My increases by a factor of /2. From left to right these three plots correspond to increas-
ing M, /M, as indicated on each plot. The lower row of plots makes the same comparison for a larger time interval, Aa/a, =0.59, which corre-

sponds to the interval over which My increases by a factor of 16.

bin, summed over the pairs of output times. Successive pairs
of output times are not really independent, so we define an
effective number per bin_as N, =M, /f, and take the
fractional error to be 1/JN. For the particular case for
which Aa/a, corresponds to the spacing between successive
outputs, i.e. outputs spaced by a factor 2 in M, (1), we take
f=1, but for all larger values of Aa/a, we adopt f=2, which
corresponds to taking outputs separated by a factor of 2 in
M(¢) to be independent. This procedure is obviously not
rigorous, but provides some indication of the magnitude of
statistical errors.

We have compared the analytical predictions of (2.17)
with the conditional mass functions estimated from each of
our simulations for a wide range of both M, and Aa/a,.
Representative selections of these comparisons are shown in
Figs 4-6, for the case of groups identified using FOF (0.2),
and restricted to haloes satisfying N,>20 and AN =
N, =N, >20, N, and N, being the number of particles in the
halo at a, and a, respectively. In these figures, My was
defined using top hat (TH) smoothing with y,=4s/3 and the
standard d.,=1.69, which gave close to the best fit to the
FOF(0.2) mass functions in Section 5. The fits of the
analytical to the N-body results in these diagrams are much

less sensitive to the adopted value of d,, than was the case for
the mass functions, and adoption of the ‘best fit' value of
0, =1.81 only slightly changes the analytic distributions. In
fact, the values of 0, that give the best fit for the conditional
mass functions are in general different from those found for
the mass functions themselves. The deviations of the first few
or last few N-body points from the analytical curves seen in
some of the plots seem not to be significant, but depend on
the choice of cut-offs in N, and AN. With more conservative
cuts, one has smaller deviations, but then the N-body data
cover smaller ranges in M, and AM.

The conditional mass functions, d fldIn AM |y, aqa,,
shown in these figures exhibit a quite complicated depen-
dence on the accreted mass, AM, the initial mass, M,, the
time interval, Aa, and the spectral index, n, of the initial
conditions. The distributions in AM/M, are asymmetric and
vary both in the form and degree of this asymmetry and also
in their width and in the location of their peak when one
of M,/My, Aafa,, or n is changed. The distributions are
broadest and most asymmetric for low values of M, [M,.
Also, for fixed M, /M, they are broader for lower values of 7.
An increase in Aa/a, shifts the peaks of the distributions to
higher masses while also altering the asymmetric nature of
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Figure 5. As Fig. 4, but for the n= — 1 model. The values of Aa/a, indicated on the figures again correspond to the intervals over which My

increases by factors of J2 and 16, respectively.

the low M, /M, distributions. Remarkably, all these features
are quantitatively reproduced by the analytical expression
(2.17). Overall, we find reasonable agreement between the
simulations and the analytical distributions over 2-3 decades
in M,/Myand AM/M,.

We also investigated the dependence of the conditional
mass functions on the choice of group-finding algorithm.
With the use of the ‘best-fitting’ J,, values from Section 5,
the analytical distributions fit about as well for FOF(0.3) as
for FOF(0.2), while for FOF(0.15) and SO(180) the fits were
slightly worse. We show the results for the »= — 1 spherical
overdensity groups in Fig. 7, with d, = 1.96. In this case, the
analytical distribution actually fits even better if 6., =1.69 is
chosen.

7 FORMATION TIMES

In hierarchical models, haloes evolve continuously by
accreting smaller haloes and by merging with comparable
and larger haloes. Thus there is no clear-cut way of defining
when a particular halo formed. As a working definition,
we have adopted the formation time to be the point at which
half the mass of a halo is assembled. The distribution
dp,/de( 4| M,, t,), equation (2.19), gives the probability that
half the mass of a halo of mass M, identified at time ¢, was
assembled at an earlier time #. Here we compare this analyti-
cal distribution of formation times with estimates made
directly from our N-body simulations.

Starting with a set of group catalogues defined using one
of the group-finding schemes of Section 5, we proceed as
follows. For each group of mass M identified at a particular
output epoch at which the expansion factor equals a,, we
identify its most massive progenitor at all earlier output
times. Progenitors of a group are defined to be all those
groups present at an earlier epoch that have the majority
(normally greater than 90 per cent) of their particles incorpo-
rated into the final group. We then determine at which epoch
the mass of this most massive progenitor first becomes larger
than M/2. This epoch is taken to define the formation time of
the halo and defines the expansion factor g; at formation.
The histogram of a; values built up for a particular choice
of a, and M defines the formation-time distribution
dp¢/d In a| .. For our scale-free simulations, this distribu-
tion is a function of only M/M, and a;/a,. Hence we can
once again combine the histograms from different final out-
put times, 4, to determine better the numerical estimate of
dp/d In a¢|p,. We choose to use only final epochs
separated by a factor of 2 in My, so that they are approxi-
mately independent, and to estimate Poisson errors from the
combined number of haloes in each bin.

Figs 8-10 compare these results for FOF(0.2) groups for a
range of M/M, with the analytical predictions of equation
(2.19), for spectral indices n= —2, —1 and 0, respectively.
In constructing these plots, we use only haloes with N> 40
particles at the epoch ;. [Note that if the epoch a, is identi-
fied with the present epoch then the quantity plotted along
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Figure 6. As Fig. 4, but for the n=0 model. The values of Aa/a; indicated on the figures again correspond to the intervals over which My

increases by factors of J2and 16, respectively.

the x-axis, log(a;/a,)= —log(1 + z;), where z; is the formation
redshift]. In each case, there is a clear trend for larger M/M,
haloes both to be younger on average and to have a narrower
range of ages. This behaviour, and in fact the precise shape of
the distributions, is well reproduced by the analytical distri-
butions given by equation (2.19). We find agreement over
2-3 decades in M/M,.

We also investigated the formation times of groups identi-
fied using the FOF algorithm with differing values of the
linking length b and for groups defined by SO with x = 180.
Once the threshold d, was adjusted to the appropriate ‘best-
fitting’ value found for the mass functions, then the agree-
ment between the analytical and numerical distributions was
as good as for the FOF(0.2) groups. In contrast to the fits to
the conditional mass functions in Section 6, the fits to the
formation-time distributions were appreciably worse for
FOF(0.15), FOF(0.3) and SO(180) groups if the value
0., =1.69 was used instead of the appropriate ‘best-fitting’
value. As an example, we show the distributions of formation
times for the case of the SO(180) groups in Fig. 11.

In Paper I, we defined a scaled variable

- d.(a;) = Oc(ao)

Yo M) o (M)

_ [M/M*(ao)]("+3)/6(a0/af —-1)
- (2(n+3)/3_ 1)1/2

(the second line is for self-similar models) in terms of which
the analytical distribution of formation times dp;/dd; is
independent of M/M, and very nearly independent of the
spectral index n. This last property was demonstrated
graphically in fig. 7 of Paper I. Here we transform each of the
distributions from Figs 8-10 into distributions dp,/ddy,
which we show in Fig. 12. These figures confirm that for the
groups found in the N-body simulations there is also very
little dependence of these distributions on either mass or
spectral index. The short-dashed curves in Fig. 12 are the
analytical distributions, while the long-dashed curves are the
Monte-Carlo distributions taken from Paper 1. The Monte
Carlo method attempts to follow a single path back through
the merger tree leading to a given object, choosing the more
massive progenitor each time a halo splits in two, back to
when the largest progenitor has fallen below half the final
mass. Clearly, the distributions estimated from the N-body
simulations are well described by the analytical predictions
(equation 2.19), while the Monte Carlo model tends to over-
estimate halo ages. The problem with the Monte Carlo
method appears to lie with an incorrect weighting of the
probabilities for the distribution of progenitor masses at each
branching point. We are currently working on an improved
Monte Carlo procedure which gives results very close to the
analytical and N-body ones, and this will be described in a
future paper.
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Figure 7. AsFig. 5, but for SO(180) groups and with the best-fitting value of &, = 1.96 adopted from Fig. 3.
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Figure 8. Comparison of the distribution of formation epochs derived from the FOF(0.2) groups in the n= — 2 simulation (solid curves) with
the analytical prediction (2.19) (dashed curves), for the various values of M/M, indicated. We have assumed that d, = 1.69. For the N-body
curves, haloes were identified and formation epochs a; found for a set of identification epochs a, differing by powers of two in M,, and the
results averaged. Only haloes with N> 40 were used. The error bars represent Poisson errors corresponding to the total number of haloes in

each bin in a;, after combining the different epochs.

8 CONCLUSIONS

We have tested the statistical predictions of the
Press—-Schechter model for the mass function of dark matter
haloes (Press & Schechter 1974; Bond et al. 1991; Bower
1991), and its extension to halo lifetimes and merger rates

(Paper I), against a set of large N-body simulations. The
simulations used 128% particles and modelled self-similar
clustering with Q=1 and initial power spectra P(k)« k",
with spectral indices n=—2, —1 and 0. The comparison
reveals that in every respect the analytical formulae produce
remarkably good fits to the numerical results. Although
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Figure 11. As Fig. 9, but for SO(180) groups in the n=

tested for self-similar clustering, the analytical formulae are
also expected to apply for arbitrary Q and more general
power spectra, provided that structure grows hierarchically

from Gaussian density fluctuations in cold collisionless .

matter.

— 1 model, and with 6., = 1.96.

Dark matter haloes were identified in the simulations
using two alternative methods. The first was the standard
percolation or ‘friends of friends’ method, which effectively
selects objects bounded by surfaces of specified density. We
investigated linking lengths b=0.15, 0.2 and 0.3 in units of
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Figure 12. Distributions of dp;/d @, for the N-body simulations compared with the analytical and Monte Carlo predictions from Paper I. The
thin solid lines show the N-body results for different values of M/My (averaged over output times as in Figs 8-10). The N-body curves plotted
are for the mass ranges M/M,=0.9-120, 0.1-15, 0.2-7 for n=—2, —1 and 0, respectively. The short-dashed and long-dashed lines are,

respectively, the analytical and Monte Carlo predictions.

the mean interparticle separation, corresponding to mean
halo overdensities in the range ~50-500, smaller b corre-
sponding to higher density. The second, ‘spherical over-
density’, method finds spheres of a specified mean density «,
where we used x = 180.

To apply the analytical formulae for mass functions and
merging, three choices have to be made. First, one must
select the form of spatial filter that is applied to the linear
density field in order to define o(R), the rms fluctuation as a
function of length-scale. Secondly, one must choose a
relation between filter radius R and mass M to derive o(M)
from o(R). Finally, one must set the critical density threshold
for collapse, d,,. We have investigated top hat, sharp k-space
and Gaussian filtering, with a mass-radius relation M=
7:0R? for some filter-dependent constant y;. For top hat and
sharp k-space filtering, the value of d,, required to match
best the analytical Press-Schechter mass function with the
N-body results is independent of the spectral index of the
linear density field for —2<n=<0, when y; is taken to be the
value obtained by integrating the window function over all
space (for the top hat, M is just the mass enclosed within
radius R). For Gaussian filtering, on the other hand, this
independence holds only if y; is taken to be a factor ~ 2.5
larger than is given by this integral, contrary to what has been
assumed in previous work. When haloes are selected using
percolation with b=0.2, which selects haloes having mean
overdensity ~ 100-200, the best-fitting J,, values for each
of the filters are within 20 per cent of the value J,=1.69
predicted by the analytical model for the collapse of a spheri-
cally symmetric overdense region in an Q=1 universe. In
this case, the Press-Schechter mass function fits the N-body
results to an accuracy of ~30 per cent. When the group
selection method is changed, the best-fitting d,, also changes.
The mass functions for the 5=0.15 and x=180 groups
require larger values of d., (further from J,,=1.69) in the
Press-Schechter formula to give reasonable fits, compared
with the b=0.2 groups, and even then fit somewhat less well.

Overall, there seems little to choose between the different
types of filtering, but we have concentrated on the top hat
filter in most of our comparisons because this is more
standard. For the conventional choices of top hat filtering

with d.,=1.69, the analytical mass functions differ by less
than a factor of 1.5-2 from those estimated from the b=0.2
percolation groups in the simulations, over a range of 10° in
mass (see Fig. 1). The error is largest for the rare high-mass
haloes, but is typically <30 per cent for the more numerous
haloes that contain most of the mass. The error in the mass
function can in fact be reduced to <30 per cent overall for
this case by increasing 6., by ~ 10 per cent. The comparison
is limited to the above-mentioned range of mass by the
dynamic range of our simulations, which span a factor of 103
in mass from the smallest resolved haloes (containing at least
20 particles) to the most massive. Although still limited in
dynamic range, this is a considerable improvement over the
comparison made by Efstathiou et al. (1988), which utilized
simulations containing only 1/64th of the number of
particles of our simulations.

With the same choices of filter, threshold, and group-
finding, we also find remarkable agreement between the halo
merger rates measured from the simulations and the analyti-
cal predictions. All the trends seen in the dependence of the
merger rate on the masses of the two haloes involved and on
the time interval considered are reproduced quantitatively by
the analytic formula (2.17) (see Figs 4-6). In fact, equation
(2.17) is a reasonable fit to the numerical estimates over the
full range of masses, roughly 2-3 decades, that we are able to
explore. A similarly impressive agreement, again for a wide
range of masses, is seen when one compares the distribution
of halo formation times estimated from the simulations with
the analytical formula (2.19) (see Figs 8-10). For the
b=0.15, b=0.3 and x=180 groups, the agreement for
merger rates and formation times is about as good as for the
b=0.2 groups, provided that, instead of the standard value
0., =1.69, one uses the values of d, that best fit the mass
functions in the other formulae too.

We end with a caveat. Despite its success in matching the
results of N-body simulations, the Press-Schechter approach
from which our formulae are derived falls some way short of
being a rigorous analytical model of gravitational instability
and non-linear dynamics. It is instead based on the ansatz
(Bond et al. 1991) that the mass in non-linear objects of mass
M can be equated with the mass within regions whose linear
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theory density perturbation 6 exceeds a threshold value, 6,
when smoothed on the mass-scale M, but is below the
threshold on all larger scales. In particular, no regard is paid
to the shape or size of these regions. Many will enclose less
than mass M, making it impossible that they form objects of
mass M without combining with other nearby material. It is
clear that any physically realistic model must take account of
the properties of the linear density field across the entirety of
each region that collapses to form a non-linear halo. The
‘peak-patch’ analysis of Bond & Myers (1993a) is the first
model that addresses this aspect of the problem. The dis-
advantage of this more rigorous treatment is that it is very
complex and does not lead to analytical formulae for halo
mass functions or merger rates. Thus, despite the fundamen-
tal flaws in the Press-Schechter approach, the analytical
formulae that it yields are extremely valuable if they are an
accurate description of the true halo mass functions and
merger statistics. This work confirms that these statistical
predictions reproduce remarkably well the non-linear
hierarchical evolution of dark matter haloes in large, scale-
free, cosmological N-body simulations. They therefore pro-
vide a valid and extremely useful framework in which to
study galaxy and cluster formation in hierarchical models.
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