We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

Lagrangian coherent structures in photospheric flows and their implications for coronal magnetic structure.

Yeates, A. R. and Hornig, G. and Welsch, B. T. (2012) 'Lagrangian coherent structures in photospheric flows and their implications for coronal magnetic structure.', Astronomy & astrophysics., 539 . A1.


Aims. We show how the build-up of magnetic gradients in the Sun’s corona may be inferred directly from photospheric velocity data. This enables computation of magnetic connectivity measures such as the squashing factor without recourse to magnetic field extrapolation. Methods. Assuming an ideal evolution in the corona, and an initially uniform magnetic field, the subsequent field line mapping is computed by integrating trajectories of the (time-dependent) horizontal photospheric velocity field. The method is applied to a 12 h high-resolution sequence of photospheric flows derived from Hinode/SOT magnetograms. Results. We find the generation of a network of quasi-separatrix layers in the magnetic field, which correspond to Lagrangian coherent structures in the photospheric velocity. The visual pattern of these structures arises primarily from the diverging part of the photospheric flow, hiding the effect of the rotational flow component: this is demonstrated by a simple analytical model of photospheric convection. We separate the diverging and rotational components from the observed flow and show qualitative agreement with purely diverging and rotational models respectively. Increasing the flow speeds in the model suggests that our observational results are likely to give a lower bound for the rate at which magnetic gradients are built up by real photospheric flows. Finally, we construct a hypothetical magnetic field with the inferred topology, that can be used for future investigations of reconnection and energy release.

Item Type:Article
Keywords:Magnetic fields, Sun: photosphere, Sun: corona, Sun: magnetic topology
Full text:(VoR) Version of Record
Download PDF
Publisher Web site:
Publisher statement:Reproduced with permission from Astronomy & Astrophysics, © ESO, 2012.
Date accepted:No date available
Date deposited:21 April 2015
Date of first online publication:March 2012
Date first made open access:No date available

Save or Share this output

Look up in GoogleScholar