Antonietti, Paola and Giani, Stefano and Houston, Paul (2014) 'Domain decomposition preconditioners for discontinuous Galerkin methods for elliptic problems on complicated domains.', Journal of scientific computing., 60 (1). pp. 203-227.
Abstract
In this article we consider the application of Schwarz-type domain decomposition preconditioners for discontinuous Galerkin finite element approximations of elliptic partial differential equations posed on complicated domains, which are characterized by small details in the computational domain or microstructures. In this setting, it is necessary to define a suitable coarse-level solver, in order to guarantee the scalability of the preconditioner under mesh refinement. To this end, we exploit recent ideas developed in the so-called composite finite element framework, which allows for the definition of finite element methods on general meshes consisting of agglomerated elements. Numerical experiments highlighting the practical performance of the proposed preconditioner are presented.
Item Type: | Article |
---|---|
Keywords: | Composite finite element methods, Discontinuous Galerkin methods, Domain decomposition, Schwarz preconditioners. |
Full text: | (AM) Accepted Manuscript Download PDF (901Kb) |
Status: | Peer-reviewed |
Publisher Web site: | http://dx.doi.org/10.1007/s10915-013-9792-y |
Publisher statement: | The final publication is available at Springer via http://dx.doi.org/10.1007/s10915-013-9792-y. |
Date accepted: | 09 October 2013 |
Date deposited: | 22 June 2015 |
Date of first online publication: | July 2014 |
Date first made open access: | No date available |
Save or Share this output
Export: | |
Look up in GoogleScholar |