Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham Research Online
You are in:

Chameleon f(R) gravity on the Virgo cluster scale.

Corbett Moran, C. and Teyssier, R. and Li, B. (2015) 'Chameleon f(R) gravity on the Virgo cluster scale.', Monthly notices of the Royal Astronomical Society., 448 (1). pp. 307-327.

Abstract

Models of modified gravity offer promising alternatives to the concordance Λ cold dark matter (ΛCDM) cosmology to explain the late-time acceleration of the universe. A popular such model is f(R) gravity, in which the Ricci scalar in the Einstein–Hilbert action is replaced by a general function of it. We study the f(R) model of Hu & Sawicki, which recovers standard general relativity in high-density regimes, while reproducing the desired late time acceleration at cosmological scales. We run a suite of high-resolution zoom simulations using the ECOSMOG code to examine the effect of f(R) gravity on the properties of a halo that is analogous to the Virgo cluster. We show that the velocity dispersion profiles can potentially discriminate between f(R) models and ΛCDM, and provide complementary analysis of lensing signal profiles to explore the possibility to further distinguish the different f(R) models. Our results confirm the techniques explored by Cabré et al. to quantify the effect of environment in the behaviour of f(R) gravity, and we extend them to study halo satellites at various redshifts. We find that the modified gravity effects in our models are most observable at low redshifts, and that effects are generally stronger for satellites far from the centre of the main halo. We show that the screening properties of halo satellites trace very well that of dark matter particles, which means that low-resolution simulations in which subhaloes are not very well resolved can in principle be used to study satellite properties. We discuss observables, particularly for halo satellites, that can potentially be used to constrain the observational viability of f(R) gravity.

Item Type:Article
Keywords:Methods: numerical, Galaxies: clusters: general, Galaxies: evolution, Galaxies: formation, Cosmology: theory, Dark energy.
Full text:(VoR) Version of Record
Download PDF
(8817Kb)
Status:Peer-reviewed
Publisher Web site:http://dx.doi.org/10.1093/mnras/stu2757
Publisher statement:This article has been accepted for publication in Monthly notices of the Royal Astronomical Society. ©: 2015 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.
Date accepted:29 December 2014
Date deposited:29 June 2015
Date of first online publication:March 2015
Date first made open access:No date available

Save or Share this output

Export:
Export
Look up in GoogleScholar