We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

Dynamic transmission of protein allostery without structural change : spatial pathways or global modes?

McLeish, T.C.B. and Cann, M.J. and Rodgers, T.L. (2015) 'Dynamic transmission of protein allostery without structural change : spatial pathways or global modes?', Biophysical journal., 109 (6). pp. 1240-1250.


We examine the contrast between mechanisms for allosteric signaling that involve structural change, and those that do not, from the perspective of allosteric pathways. In particular we treat in detail the case of fluctuation-allostery by which amplitude modulation of the thermal fluctuations of the elastic normal modes conveys the allosteric signal, and address the question of what an allosteric pathway means in this case. We find that a perturbation theory of thermal elastic solids and nonperturbative approach (by super-coarse-graining elasticity into internal bending modes) have opposite signatures in their structure of correlated pathways. We illustrate the effect from analysis of previous results from GlxR of Corynebacterium glutamicum, an example of the CRP/FNR transcription family of allosteric homodimers. We find that the visibility of both correlated pathways and disconnected sites of correlated motion in this protein suggests that mechanisms of local elastic stretch and bend are recruited for the purpose of creating and controlling allosteric cooperativity.

Item Type:Article
Full text:(AM) Accepted Manuscript
Available under License - Creative Commons Attribution Non-commercial No Derivatives.
Download PDF
Publisher Web site:
Publisher statement:© 2015 This manuscript version is made available under the CC-BY-NC-ND 4.0 license
Date accepted:07 August 2015
Date deposited:22 September 2015
Date of first online publication:31 August 2015
Date first made open access:31 August 2016

Save or Share this output

Look up in GoogleScholar