We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

The brightest young star clusters in NGC 5253.

Calzetti, D. and Johnson, K. E. and Adamo, A. and Gallagher III, J. S. and Andrews, J. E. and Smith, L. J. and Clayton, G. C. and Lee, J. C. and Sabbi, E. and Ubeda, L. and Kim, H. and Ryon, J. E. and Thilker, D. and Bright, S. N. and Zackrisson, E. and Kennicutt, R. C. and de Mink, S. E. and Whitmore, B. C. and Aloisi, A. and Chandar, R. and Cignoni, M. and Cook, D. and Dale, D. A. and Elmegreen, B. G. and Elmegreen, D. M. and Evans, A. S. and Fumagalli, M. and Gouliermis, D. A. and Grasha, K. and Grebel, E. K. and Krumholz, M. R. and Walterbos, R. and Wofford, A. and Brown, T. M. and Christian, C. and Dobbs, C. and Herrero, A. and Kahre, L. and Messa, M. and Nair, P. and Nota, A. and Östlin, G. and Pellerin, A. and Sacchi, E. and Schaerer, D. and Tosi, M. (2015) 'The brightest young star clusters in NGC 5253.', Astrophysical journal, 811 (2). p. 75.


The nearby dwarf starburst galaxy NGC 5253 hosts a number of young, massive star clusters, the two youngest of which are centrally concentrated and surrounded by thermal radio emission (the "radio nebula"). To investigate the role of these clusters in the starburst energetics, we combine new and archival Hubble Space Telescope images of NGC 5253 with wavelength coverage from 1500 Å to 1.9 μm in 13 filters. These include Hα, Pβ, and Pα, and the imaging from the Hubble Treasury Program LEGUS (Legacy Extragalactic UV Survey). The extraordinarily well-sampled spectral energy distributions enable modeling with unprecedented accuracy the ages, masses, and extinctions of the nine optically brightest clusters (MV < −8.8) and the two young radio nebula clusters. The clusters have ages ~1–15 Myr and masses ~1 × 104–2.5 × 105 M⊙. The clusters' spatial location and ages indicate that star formation has become more concentrated toward the radio nebula over the last ~15 Myr. The most massive cluster is in the radio nebula; with a mass ~2.5 × 105 M⊙ and an age ~1 Myr, it is 2–4 times less massive and younger than previously estimated. It is within a dust cloud with AV ~ 50 mag, and shows a clear near-IR excess, likely from hot dust. The second radio nebula cluster is also ~1 Myr old, confirming the extreme youth of the starburst region. These two clusters account for about half of the ionizing photon rate in the radio nebula, and will eventually supply about 2/3 of the mechanical energy in present-day shocks. Additional sources are required to supply the remaining ionizing radiation, and may include very massive stars.

Item Type:Article
Keywords:Galaxies: dwarf, Galaxies: general, Galaxies: individual (NGC 5253), Galaxies: starburst, Galaxies: star clusters: general.
Full text:(VoR) Version of Record
Download PDF
Publisher Web site:
Publisher statement:© 2015. The American Astronomical Society. All rights reserved.
Date accepted:17 August 2015
Date deposited:27 October 2015
Date of first online publication:October 2015
Date first made open access:No date available

Save or Share this output

Look up in GoogleScholar