We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

An analytical solution for the consolidation around a laterally loaded pile.

Osman, A.S. and Randolph, M. F. (2012) 'An analytical solution for the consolidation around a laterally loaded pile.', International journal of geomechanics., 12 (3). pp. 199-208.


This paper presents a closed-form analytical solution for the consolidation of soil around a laterally loaded pile, assuming the soil skeleton deforms elastically and under plane strain conditions. The problem is idealized as a circular rigid disk surrounded by a deformable soil zone. Drainage is assumed to occur at the boundary of the assumed zone of deformable soil around the pile. The response around the pile is obtained using an uncoupled consolidation analysis. The solution for the governing equation of excess pore water pressure is found by using the separation of variables technique. Expressions for the initial excess pore water pressure distribution are derived from the mean total stress changes given by the elastic solution. Curves showing decay of the excess pore water pressure with time, and also the variation of pile displacement, are plotted in nondimensional form. The parameters that affect the displacement prediction are illustrated and discussed. Comparison with three-dimensional analysis of a laterally loaded pile shows that the two-dimensional analysis can reasonably predict the consolidation process along the shaft of the pile.

Item Type:Article
Full text:(AM) Accepted Manuscript
Download PDF
Publisher Web site:
Date accepted:No date available
Date deposited:13 January 2016
Date of first online publication:June 2012
Date first made open access:No date available

Save or Share this output

Look up in GoogleScholar