A brief history of the TDIF-PXY signalling module: Balancing meristem identity and differentiation during vascular development

<table>
<thead>
<tr>
<th>Journal:</th>
<th>New Phytologist</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>NPH-TR-2015-20149.R1</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>TR - Commissioned Material - Tansley Review</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>n/a</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Etchells, Peter; Durham University, Biological & Biomedical Sciences; UC Davis, Plant Biology & Genome Center Smit, Margot; UC Davis, Plant Biology & Genome Center; Wageningen University, Laboratory of Biochemistry Gaudinier, Allison; UC Davis, Plant Biology & Genome Center Williams, Clara; UC Davis, Plant Biology & Genome Center Brady, Siobhan; UC Davis, Plant Biology & Genome Center</td>
</tr>
<tr>
<td>Key Words:</td>
<td>vascular development, xylem, phloem, procambium, cambium, signalling</td>
</tr>
</tbody>
</table>
A brief history of the TDIF-PXY signalling module: Balancing meristem identity and differentiation during vascular development.

J. Peter Etchells*1,2, Margot E. Smit1,3, Allison Gaudinier1, Clara J. Williams1 and Siobhan M. Brady*1

*Corresponding Authors: Siobhan M. Brady: sbrady@ucdavis.edu
J. Peter Etchells: Peter.Etchells@durham.ac.uk

1Plant Biology and Genome Center, University of California Davis, 1 Shields Avenue, Davis, CA-95616

2School of Biological and Biomedical Sciences, Durham University, South Road, Durham, DH1 3LE

3Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703HA Wageningen, the Netherlands
Abstract
A significant proportion of terrestrial biomass is constituted of xylem cells that make up woody plant tissue. Xylem is required for water transport, and is present in the vascular tissue with a second conductive tissue, phloem, required primarily for nutrient transport. Both xylem and phloem are derived from cell divisions in vascular meristems known as the cambium and procambium. One major component that influences several aspects of plant vascular development, including cell division in the vascular meristem, vascular organisation and differentiation of vascular cell types, is a signalling module characterised by a peptide ligand called TDIF and its cognate receptor, PXY. In this review, we explore the literature that describes signalling components, phytohormones and transcription factors that interact with these two central factors, to control the varying outputs required in vascular tissues for normal organisation and elaboration of plant vascular tissue.

Introduction
In higher plants, post-embryonic tissues are derived from pluripotent stem cell populations present in niches referred to as meristems. Stem cell niches are composed of central organizing cells with adjacent dividing stem cells that provide cells for new organs. Meristems that are responsible for length-wise plant growth are located at the root and shoot apices. Radial expansion also occurs via divisions in meristematic tissues, referred to as the cambium and procambium, which are present in the vascular tissue. Vascular tissue supports length-wise growth by providing both physical support and long-distance fluid and nutrient transport. It is constituted of two major transport tissues; the phloem, which is primarily responsible for movement of photosynthate from the leaves to the root system, and the xylem, which is responsible for the movement of water and solutes from the root to the shoot. The xylem is also responsible for the majority of the plants mechanical strength, due to the presence of cells with large woody secondary cell walls. The cambium and procambium are positioned between xylem and phloem, and cells within these meristematic tissues divide down their long axis in a highly oriented manner, perpendicular to the radial axis of the stem. These divisions within the cambium displace older cells to the periphery of the meristem where they take on either xylem identity towards the centre of the stem, or a phloem identity towards the outside. Vascular meristems are responsible for generating the majority of plant biomass, which is mostly constituted of the xylem. This woody tissue represents a huge renewable resource of energy and biomaterials.
An increasing number of molecular and genetic components that include phytohormones, components of signalling mechanisms, and transcription factors have been identified and characterised that are required to initiate, pattern and expand the vascular tissue. These components have been summarised in a number recent reviews (Lucas et al., 2013; Furuta et al., 2014; Ohashi-Ito & Fukuda, 2014; Jouannet et al., 2015). One such mechanism is characterised by the peptide ligand TDIF (TRACHEARY ELEMENT DIFFERENTIATION INHIBITORY FACTOR) and its cognate receptor PHLOEM INTERCALATED WITH XYLEM (PXY). The interaction of these factors results in particularly complex outputs. This ligand-receptor pair is thought to regulate the rate of cell division in the cambium and procambium, exclude xylem identity from the division zone and also control vascular organisation via interactions with a number of other signalling components and transcriptional regulators (Ito et al., 2006; Fisher & Turner, 2007; Hirakawa et al., 2008; Etchells & Turner, 2010b). Here we focus on aspects of vascular development influenced by TDIF/PXY signalling that describes how the complex outputs of this signalling pathway are coordinated to control vascular development.

Peptides that regulate stem cell fate
Transdifferentiation assays have proved a powerful tool for identification of factors influence vascular development (Fukuda, 1997; Demura et al., 2002; Kubo et al., 2005). These assays make use of mechanically isolated leaf mesophyll cells that are subjected to auxin and cytokinin treatments enabling them to dedifferentiate into procambium-like cells and subsequently take on a tracheary element identity reminiscent of mature xylem in the absence of cell division (Fukuda & Komamine, 1980). TDIF was first identified as a dodecapeptide (His-Glu-Val-Hyp-Ser-Gly-Hyp-Asn-Pro-Ile-Ser-Asn) that promoted both cell division and prevented assumption of tracheary element identity in this system. The CLAVATA3/EMBRYO SURROUNDING REGION (CLE) gene family encodes for ligands which interact with receptor-like kinase receptors present at the cell surface. The mature TDIF peptide is derived independently from two CLE family members, CLE41 and CLE44, that are translated as 100 amino acid proteins which are cleaved and the proline residues hydroxylated to form the mature peptide (Ito et al., 2006). A closely related gene, CLE42, encodes a dodecapeptide with similar activity (Etchells & Turner, 2010b) but differs at by a single amino acid (Glu → Gly at the second amino acid of the mature peptide) (Ito et al., 2006).

In Arabidopsis there are 32 CLE family genes (Oelkers et al., 2008) which have been placed in putative functional groups based on phenotypes of constitutive overexpression lines. Plants
overexpressing the CLE genes from which TDIF is derived demonstrated a loss of apical dominance (Strabala et al., 2006). This phenotype is fairly common in plants that have either xylem differentiation defects, such as irregular xylem3 (irx3) mutants, which lack large secondary cell walls, and/or in procambium over-proliferation mutants, such as acaulis5 (acl5) and high cambial activity (hca) (Taylor et al., 1999; Hanzawa et al., 2000; Pineau et al., 2005). Consistent with a loss of apical dominance, considerable increases in cell numbers in the vascular tissue of CLE41, CLE42 and CLE44 over-expression lines were subsequently observed (Figure 1A-B) which were accompanied by increases in the expression of genes that mark dividing cells (Hirakawa et al., 2008; Whitford et al., 2008; Etchells & Turner, 2010b). Consequently, observations in both the transdifferentiation assay and in planta suggested that TDIF promotes cell division in vascular tissue.

A receptor for TDIF ligand

Stem cell populations in the shoot and root have been shown to be under strict control to limit their size in order to maintain the balance between cell division and differentiation. Critical in this regulation are peptides from the CLE/ESR family (Fletcher et al., 1999; Schoof et al., 2000; Stahl et al., 2009). In the shoot apical meristem, CLV3 peptide controls meristem size via binding to the LRR-RLK receptor CLAVATA1 (CLV1) (Kondo et al., 2006; Ogawa et al., 2008), and as such cell-surface receptors related to CLV1 are prime candidates for receptors to other CLE peptides. Seedlings challenged with TDIF treatment in liquid culture exhibit a striking reduction in xylem cell differentiation, consistent with the original observations made in the transdifferentiation assay. Using this knowledge, a collection of LRR-RLK receptor mutants were treated with TDIF in order to identify mutants that failed to respond (Hirakawa et al., 2008). Lines carrying a T-DNA insertion in a receptor kinase gene, present in a clade adjacent to that containing CLV1 and closely related BARELY ANY MERISTEM (BAM) genes (Shiu & Bleecker, 2001; DeYoung et al., 2006) failed to respond to TDIF treatment. Photoaffinity labelling demonstrated that TDIF bound to this receptor which was named TDR (for TDIF Receptor) (Hirakawa et al., 2008). TDR had been previously described as being encoded by the PHLOEM INTERACTED WITH XYLEM (PXY) gene, required for normal organisation of vascular tissue (Fisher & Turner, 2007). In wild type plants vascular tissue is ordered xylem, procambium, phloem in distinct domains along the radial axis of the stem (Figure 1A). In pxy mutants, phloem and xylem lacked spatial separation, with phloem intercalated with xylem (Figure 1C). In initiating vascular tissue, cell divisions that in wild type formed perpendicular to the radial axis of the stem were observed
at altered orientations. Changes were also observed in the xylem. Wild type xylem cells are characteristically long and straight and run parallel to the apical – basal axis of the stem. In \textit{pxy} mutants the xylem cells were curved, running in and out of the plane of longitudinal sections (Etchells & Turner, 2010a). Arabidopsis xylem is mostly constituted of three cell types; vessels, parenchyma and fibres. Vessels are large water conducting cells with pitted secondary cell walls. Smaller parenchyma and fibre cells fill the gaps between vessels. In established vascular tissue, fibres, which develop secondary walls are prevalent, but in young vascular tissue it is typically parenchyma, which do not have secondary cell walls, that are formed. While the number of differentiated cells present in the xylem was reported as unchanged in vascular bundles of 6 week old \textit{pxy} mutants, the ratio of vessels to other xylem cell types was altered, with \textit{pxy} demonstrating a reduction in vessel number (Fisher & Turner, 2007). In 4 week old inflorescence stems, phloroglucinol (which marks the lignin component in xylem secondary cell walls) appears in ectopic positions in \textit{pxy} mutant vascular bundles, consistent with observations made in the transdifferentiation assay, suggesting that TDIF-PXY represses xylem differentiation (Figure 2).

The loss of vascular organisation in \textit{pxy} mutants, increases in cell division in the procambium of \textit{CLE41} and \textit{CLE42} overexpression lines, and changes to xylem differentiation in both cell culture and plant lines led to hypotheses suggesting that TDIF and PXY represent a multifunctional signalling module with complex outputs. Overexpression phenotypes of \textit{CLE41} and \textit{CLE42} are entirely suppressed by \textit{pxy}, suggesting that all known outputs of TDIF signalling are via the PXY receptor (Etchells & Turner, 2010b). It is unknown how or if these outputs, i.e. control of cell division; vascular organisation; and xylem differentiation, are inter-related and/or integrated. However, some understanding of the differing outputs, discussed below, has followed identification of transcription factor targets of TDIF-PXY, signal components that act downstream of PXY in the cytoplasm, and other signalling pathways that cross-talk with TDIF-PXY.

TDIF, PXY and promotion of vascular cell division.

As with the identification of the TDIF receptor, identification of the first transcriptional target of PXY signalling demonstrated homology with signalling systems in shoot and root apical meristems. In the shoot, the expression of the \textit{WUSCHEL (WUS)} transcription factor is regulated via the interaction between CLV3 peptide and CLV1 receptor (Brand \textit{et al.}, 2000; Schoof \textit{et al.}, 2000). Furthermore, in roots, expression of the \textit{WUSCHEL-related HOMEOBOX 5 (WOX5)} transcription factor responds to changes in CLE40 levels (Stahl \textit{et
al., 2009), through the LRR-RLK ARABIDOPSIS CRINKLY 4 (ACR4) receptor (Stahl et al., 2009). It therefore followed that WOX genes may be targets of TDIF-PXY signalling. Rapid induction of WOX4 expression was observed following incubation of wild type seedlings in liquid culture with TDIF (<30 mins) but not in pxy mutants, demonstrating that TDIF controls WOX4 expression through the PXY receptor and thus identifying WOX4 as the first transcriptional target of TDIF-PXY (Hirakawa et al., 2010). When wild type plants were subjected to TDIF treatment for seven days, increases in the number of procambium cells were observed that were not present in wox4 lines under similar conditions. Genetic analysis of wox4 mutants also suggested that, while procambium cell number was reduced, xylem differentiation appeared unaffected. Consequently, WOX4 is thought to be involved in the regulation of cellular proliferation but not xylem differentiation, suggesting that these two TDIF-PXY outputs are genetically separable (Hirakawa et al., 2010). Evidence suggests that WOX4 acts downstream of PXY signalling to promote vascular cell division in conjunction with a second WOX transcription factor, WOX14, the expression of which is increased in response to longer treatment with TDIF as wox14 enhances the cell division defect of wox4 mutants (Etchells et al., 2013).

Repression of xylem differentiation by PXY signalling.

While identification of TDIF-PXY transcription factor targets led to some understanding of cell division outputs of the TDIF-PXY signalling module, factors that interact with the PXY cytoplasmic domain have been identified as mediating control of xylem differentiation. In plants, LRR RLK signalling on the cytoplasmic side of the cell membrane is mediated by either mitogen activated protein kinases, glycogen synthase kinase 3 proteins (GSK3’s), or in some cases, combinations of the two (Xu & Zhang, 2015; Youn & Kim, 2015). Related GSK3 proteins BRASSINOSTEROID INSENSITIVE 2 (BIN2), BIN2-LIKE 1 (BIL1), BIL2, SHAGGY-RELATED KINASE 11 (ATSK11) and ATSK13 were found to interact with PXY in yeast two-hybrid assays, and these interactions were confirmed in planta by fluorescence resonance energy transfer. In tobacco transient assays, the interaction between GSK3’s and PXY was shown to occur at the plasma membrane, and only in the presence of TDIF. Consequently, the perception of TDIF by PXY results in promotion of GSK3 activity (Kondo et al., 2014). The interaction between GSK3’s and PXY is thought to specify repression of xylem identity. GSK3 mutant/knockdown lines which were subjected to an 11 day treatment of TDIF in liquid culture demonstrated xylem differentiation in areas where mature xylem was not observed in wild type plants subjected to the same treatment. In
contrast, the rate of cell division in wild type and GSK3 mutants was unchanged. This indicates that while the repression of xylem identity output of PXY signalling is via a PXY-GSK3 interaction, PXY influence on vascular cell division is independent of GSK3’s (Kondo et al., 2014), and presumably mediated by as yet unknown signalling components.

The interaction between PXY and GSK3’s is thought to result in negative regulation of transcription factors BRASSINAZOLE-RESISTANT 1 (BZR1) and BR11-EMS-SUPPRESSOR 1 (BES1) by phosphorylation (Figure 3). Dominant mutations in genes encoding these transcriptional regulators, bes-1d and bzr1-d result in proteins not subject to this phosphorylation-mediated repression (Yin et al., 2002; Yin et al., 2005). bes-1d, but not bzr-1d lines, were reported to demonstrate a reduction in the number of procambium cells. This suggests that cells normally present in the procambium were subject to premature differentiation into xylem, consistent with a model by which BES1 promotes xylem identity, and is prevented from doing so in the procambium via negative regulation by interactions between TDIF, PXY and GSK3’s (Kondo et al., 2014).

In contrast to TDIF-PXY, brassinosteroid signalling has been reported to promote xylem identity (Yamamoto et al., 2001; Yamamoto et al., 2007). Brassinosteroid receptor genes BRASSINOSTEROID INSENSITIVE (BRI), BR1-LIKE1 (BRL1), and BRL2 are expressed broadly in the vascular tissue (Cano-Delgado et al., 2004). Signalling through the BRI(L) receptors, negatively regulates the GSK3 BIN2 (Li & Nam, 2002). Negative regulation of BIN2 leads to hypophosphorylation of BZR1 and BES1 transcription factors and therefore activation (and nuclear localisation) (Yin et al., 2002; Yin et al., 2005). A balance between TDIF-PXY and brassinosteroid through BRI receptors likely maintains the balance between proliferation in the procambium and differentiation in the xylem via opposing regulation of GSK3's and their targets (Figure 3).

Vascular organisation defects in plants with altered TDIF-PXY signalling: Cause or effect?

The spatial separation of ligand and receptor can allow for restriction of stem cell identity to a limited number of cells. PXY-TDIF is a good example of this as the PXY transcript is procambium, i.e. stem cell expressed, while CLE41 and CLE44 transcript expression is restricted to the phloem. This suggests that the CLE41/44 protein likely moves a short distance and that this movement may set up the spatial vascular pattern and potentially, stem cell maintenance. The original model for PXY control of vascular organisation (Fisher & Turner, 2007) drew on a mechanism that controls the highly oriented division of cell
divisions during *C. elegans* embryogenesis. The cell lineage of *C. elegans* is almost entirely invariant from one individual to the next. The *C. elegans* zygote undergoes asymmetric cell divisions to produce a series of founder cells and stem cells responsible for all cells in the organism. Specifically, the P1 cell divides transversely to produce a founder cell (EMS) and a posterior stem cell (P2). The EMS cell then divides to produce the E cell and the MS cell. In this system, the cell division plane of the EMS cell is defined by the position of the adjacent P2 cell. P2 confers the positional information to the dividing EMS cell via a ligand that controls the WNT signalling pathway in the EMS. Consequently the orientation of the cell division can be manipulated by altering the position of the P2 cell (Goldstein, 1995; Schlesinger *et al.*, 1999). If PX Y acts in a similar manner and interprets positional information derived from TDIF, in a background such as 35S::CLE41 where TDIF is derived from all cells and not just those of the phloem, changes in vascular organisation should be evident. This is the phenotype that is observed in 35S::CLE41 lines which are characterised by intercalation of xylem and phloem and changes to the orientation of cell division in the procambium (Figure 1A-B). Furthermore, such disrupted vascular organisation is unlikely to be explained simply as a response to increased ligand because when *CLE41* is over-expressed in a phloem-specific manner such as in SUC2::CLE41 lines, plants retain wild type-like vascular organisation (Etchells & Turner, 2010b).

Alternative explanations for loss of vascular organisation in *pxy* mutants have been suggested by comparison of *pxy* mutant phenotypes to those of plants demonstrating defects in the shoot apical meristem. One of the hallmarks of mutants with a defective shoot apical meristem, is meristem re-initiation at positions adjacent to the (now) differentiated tissue where the meristem forms in wild type. For example, the shoot meristem is consumed during embryogenesis in the *shootmeristemless* mutant, but frequently, an ectopic meristem will form at the hypocotyl (Barton & Poethig, 1993). Similarly, *pinhead* mutants typically develop a lateral organ in the place where the meristem forms in wild type, but in the majority of cases, a new meristem is formed at the axil of the ectopic lateral organ (McConnell & Barton, 1995). Finally, in the absence of *WUSCHEL*, which encodes a relative of *WOX4*, meristems are repeatedly consumed and reinitiated (Laux *et al.*, 1996). Consequently, with respect to these mutant analyses, a hypothesis was put forward referred to as the cavity model suggesting that the loss of PX Y results in a cavity, i.e. consumption of the vascular meristem in some cell files. Loss of procambium cells in some files would result in adjacent xylem and phloem. Subsequent procambium re-initiation in a manner similar to that observed in apical meristem mutants would lead to a further disruption of pattern and
intercalation of xylem and phloem (Hirakawa et al., 2010). This hypothesis was supported by the phenotype of pxy wox4 lines that demonstrate vasculature with greater levels of disorganisation than that of pxy single mutants. In contrast, other observations in different genetic backgrounds argue against this hypothesis. wox4 single mutants demonstrate reductions in vascular proliferation in line with those observed in pxy single mutants however, no loss of vascular organisation is apparent (Hirakawa et al., 2010; Etchells et al., 2013). As the activity of the vascular meristem is similar in both cases, according to the cavity model, one would expect a loss of organisation in wox4 mutants, however, wox4 lines lack any organisation defects. This suggests that vascular organisation and vascular proliferation are genetically separable. Genetic separation of vascular organisation and cell division is supported by observations of pxy mutants in genetic backgrounds that lack a functional copy of the ERECTA (ER) receptor like kinase. ER regulates a number of processes in plant development including development of stomata (Shpak et al., 2005), and regulation of cell division - a function which it carries out redundantly with related receptor kinases, ERECTA-like 1 (ERL1) and ERL2 (Shpak et al., 2004). ER is expressed in the phloem (Uchida & Tasaka, 2013), so although expression does not overlap with that of procambium-expressed PXY, er pxy mutants demonstrate considerable increases in vascular organisation defects (Figure 4). Importantly, these mutants display no vascular proliferation defects as pxy er vascular bundles have the same numbers of cells of those of pxy single mutant plants, again, pointing to genetically separable cell division and vascular organisation outputs (Etchells et al., 2013).

If TDIF does not confer positional information through PXY, the cavity hypothesis also does not explain the loss of organisation in ectopic CLE41 overexpression lines or the observation that both periclinal and anticlinal divisions occur in plants subjected to TDIF treatment in liquid culture (Hirakawa et al., 2010), and the absence of loss of organisation when CLE41 is overexpressed specifically from the phloem (Etchells & Turner, 2010b; Etchells et al., 2015). However, one possibility is that loss of organisation in lines such as 35S::CLE41 may be a consequence of TDIF-PXY signalling also negatively regulating xylem differentiation (see above). Vascular cell divisions are thought to be aligned in part by mechanical signals. In classical experiments, organised cell divisions reminiscent of those in the cambium were observed when tobacco pith (soft tissue at the centre of the stem) was subjected to mechanical stimulation (Figure 5)(Lintilhac & Vesecky, 1984). Xylem cells have large secondary cell walls that provide the plant with the majority of its mechanical strength, but also provide a rigid tissue against which the dividing cells and their daughters are positioned.
One possibility is that the altered xylem differentiation programme in lines such as those present in **35S::CLE41** alters mechanical signals conferred to the dividing cells, which could alter the orientation of cell division. Such changes in xylem differentiation may not be observed in **SUC2::CLE41** as TDIF would remain derived from the phloem and therefore reduced in cells on the xylem side of the procambium. Consequently, while the **pxy er** phenotype strongly supports the idea that vascular organisation is the consequence of an interaction between these two pathways, further work is required to assess the balance between differentiation in the xylem and phloem-derived positional information.

Interactions between PXY signalling and phytohormones

Initiation and elaboration of vascular tissue is complex and involves interactions between PXY and other signalling pathways. These interactions include those described above between PXY and ER that specifies vascular organisation (Etchells *et al.*, 2013), and control of xylem identity through GSK3’s (Kondo *et al.*, 2014) which are also influenced by BR. However, a number of other studies have suggested that PXY also interacts to some degree with auxin, ethylene and jasmonate signalling.

Auxin signalling in particular has been widely associated with controlling vascular initiation in the embryo and root through the transcription factor **MONOPTEROS (MP)** (Berleth & Jurgens, 1993; Hardtke & Berleth, 1998) which, in turn, regulates expression of the helix-loop-helix (bHLH) transcription factor **TARGET OF MONOPTEROS5 (TMO5)**. The TMO5 protein dimerizes with another bHLH transcription factor called **LONESOME HIGHWAY (LHW)** and this dimer then controls the number of periclinal cell divisions in the early vasculature (Ohashi-Ito & Bergmann, 2007; Schlereth *et al.*, 2010; De Rybel *et al.*, 2013). In addition to its roles in early patterning of vascular tissues, auxin has also been associated with initiation of secondary growth. Secondary growth is defined as radial expansion of plant stems and is typically the consequence of cell divisions in the vascular cambium. In *Arabidopsis*, secondary growth occurs in both the hypocotyl (Chaffey *et al.*, 2002) where vascular tissue is formed in a continuous ring (Figure 4A), in roots (Dolan & Roberts, 1995), and at the base of inflorescence stems where interfascicular cambium forms between vascular bundles (Sehr *et al.*, 2010). Auxin is transported in a basipetal manner in stems, so localised treatment of *Arabidopsis* stems with NPA, an auxin transport inhibitor, results in auxin accumulation above the site of NPA application. This build-up of auxin can induce an early onset of secondary growth. Strikingly, **WOX4** expression was shown to be induced at the site of auxin accumulation, and was subsequently demonstrated to be required for secondary
growth in Arabidopsis (Suer et al., 2011). WOX4 expression can be induced above sites of NPA application even in a pxy mutant background demonstrating that auxin regulates WOX4 in a PXY-independent fashion. These results therefore suggest that WOX4 may be one point of integration between PXY and auxin signalling.

The interaction between PXY and auxin signalling is not limited to regulation of WOX4 expression in the vascular tissue. Auxin is critical in defining the sites of lateral root initiation in the root (Casimiro et al., 2001), and surprisingly a recent study connects auxin, BIN2 and PXY in regulating this process (Cho et al., 2014). Auxin response transcription factors ARF7 and ARF19 have previously been shown to promote lateral root initiation (Wilmoth et al., 2005; Okushima et al., 2007). AUX/IAA proteins act as repressors of ARF transcription factors in the absence of auxin. BIN2-mediated phosphorylation reduces the affinity of the interaction between ARF7/19 and AUX/IAAs. TDIF/PXY influence on the BIN2 GSK3 has been described above in the context of xylem differentiation, and evidence suggests that ARF7/19 phosphorylation via an interaction with BIN2 is PXY-regulated (Cho et al., 2014).

In support of this hypothesis, pxy mutants were shown to demonstrate reductions in lateral root density (Cho et al., 2014), and in numbers of total emerged lateral roots (Figure 6). Reporter lines suggest that PXY is expressed in the root (Fisher & Turner, 2007) including at sites of lateral root initiation, (Cho et al., 2014). Interestingly, one of the earliest steps of lateral root initiation is a periclinal division that occurs in the pericycle (Dubrovsky et al., 2000), i.e. a division perpendicular to the radial axis of the stem that, superficially at least, is similar in its orientation to cell divisions in the endodermis in above ground parts of the plant that are required to set up the interfascicular cambium.

In addition to auxin, jasmonate (JA) signalling has also been shown to regulate secondary growth of plant stems. While jasmonate signalling is typically associated with plant defence responses (Ballaré, 2011), factors involved in jasmonate signalling demonstrate higher expression in stems that have a developed cambium than stems where the cambium has not initiated. Plants treated with JA demonstrate increases in secondary growth, and conversely, mutants unable to respond to JA demonstrate secondary growth reductions. (Sehr et al., 2010). Transcription factors that respond to JA stimulus include members of the ERF transcription factor family (Nemhauser et al., 2006; Pauwels et al., 2008). A second factor implicated with growth in the cambium via control of expression of members of the ERF family is the gaseous hormone ethylene (Büttner & Singh, 1997; Fujimoto et al., 2000; Lorenzo et al., 2003; Nemhauser et al., 2006). Ethylene has for many years been associated with thigmomorphogenesis – the response to mechanical perturbation (Leopold et al., 1972).
The formation of tension wood, which is formed in trees in response to gravitational stimulus is just such a response, and has also been shown to involve cell division in the cambium. Tree stems subjected to exposure of ethylene gas demonstrate considerable increases in radial growth consistent with ethylene signalling promoting vascular cell division (Leopold et al., 1972; Brown & Leopold, 1973; Savidge, 1988; Love et al., 2009; Vahala et al., 2013). Furthermore, Arabidopsis mutants that demonstrate increases in ethylene production (ethylene overproducer; eto1 and eto2 mutants) (Chae et al., 2003), also demonstrate increases in radial growth of the hypocotyl (Figure 7), presumably via an increase in cell division in the cambium (Etchells et al., 2012).

ERF transcription factors, regulated by JA and ethylene are connected to PXY signalling because one of the hallmarks of the pxy mutant transcriptome is increases in ERF expression (Etchells et al., 2012). For example ERF1 and ERF11 genes, shown to be ethylene responsive (Solano et al., 1998; Fujimoto et al., 2000; Alonso et al., 2003; Nemhauser et al., 2006), demonstrate increases in expression in pxy mutant stems. ERF018 (also referred to as ORA47) and ERF109 (also known as RRTF) are also upregulated in pxy and have been reported to be jasmonate-responsive (Pauwels et al., 2008; Cai et al., 2014). Evidence suggests that these ERFs promote vascular cell division as erf mutants demonstrate reductions in radial growth and vascular bundle size. Consequently, as ERFs promote vascular cell division and are upregulated in pxy mutants, these transcription factors are thought to represent a mechanism that compensates for the loss of cell division in pxy lines. This hypothesis is supported by pxy erf109 erf018 and pxy erf109 erf1 triple mutants, which demonstrate enhancements of cell division defects over double and single mutants. Increases in radial growth observed in eto1 mutants are dependent on several of the ERF transcription factors also upregulated in pxy lines. This suggests that crosstalk exists between PXY and ethylene signalling and is supported by observations that pxy mutants are enhanced by mutants in the ethylene signal transduction pathway (Etchells et al., 2012). While interactions between PXY and JA signalling have not been tested genetically, it is striking that genes upregulated in pxy mutants are also thought to be jasmonate-responsive. A complex picture of crosstalk between JA, ethylene and PXY signalling in the regulation of vascular cell division requires further testing.

Known unknowns

While the manner in which PXY signalling influences vascular development has been the subject of much research since the discovery of TDIF almost a decade ago, many questions
remain. Neither currently known transcription factor targets, nor signalling components completely explain the phenotypes observed in the loss of function receptor mutants. Consequently further factors involved in signal transduction, and targets of TDIF-PXY are yet to be identified. For example, one phenotype identified in the original pxy mutant was a change in the ratio of cell types present in the xylem. pxy mutants demonstrated an increase in the number fibre cells relative to vessels when compared to the wild type (Fisher & Turner, 2007). This suggests that PXY may also have an influence on the identity of cells leaving the cambium that form xylem cells, beyond its role of negative regulation of xylem identity in the procambium. It is rather striking that in mRNA profiles taken across the wood forming tissue of hybrid aspen that PtPXY (also referred to as PtRLK1) expression persists in the xylem (Schrader et al., 2004).

Further questions also remain regarding genes that specify the TDIF ligand. Of the three genes that specify TDIF, only a lesion in CLE41 has been identified. cle41 mutants have fewer vascular cells but no defects in vascular organisation (Hirakawa et al., 2008). In cle41 lines, CLE44 and CLE42 may act to maintain vascular organisation, although another possibility is that interactions exist between PXY and other signals may control this output. The interaction between PXY and ER signalling has been described above, but interestingly, growth of plants in the presence of the CLE6 peptide has been shown to enhance the phenotype of TDIF-grown seedlings. This putative interaction may point to further levels of regulation at the cell membrane (Whitford et al., 2008).

While the identification of factors that regulate various aspects of PXY signalling outputs has been successful, it remains unclear as to how these complex outputs are integrated. Consequently, the extent of transcriptional outputs of TDIF-PXY signalling, its interactions with other signalling modules and how these outputs interact in a complex network to specify vascular development are matters for ongoing research.

Plant biomass is a huge renewable resource of biofuels and biomaterials, and the major constituent of plant biomass is xylem derived from the vascular meristem. Targets were set in both Europe and the US for the uptake of biofuels particularly in transport fuel, and one obstacle to meeting these targets has been a requirement for a huge amount of plant biomass from a number of sources (Somerville, 2006). Manipulating plant vascular development is one possible way to increase available plant biomass, and modulation of TDIF-PXY signalling in Arabidopsis and aspen has been shown to considerably increase height, dry weight and stem diameter (Etchells et al., 2015). A major challenge that remains is determination of how vascular development networks, including those influenced by TDIF-
PXY signalling, control biomass deposition in monocots, particularly for biomass/bioenergy crops such as miscanthus (Heaton et al., 2008; Robson et al., 2013), switchgrass (McLaughlin & Adams Kszos, 2005; Schmer et al., 2008) and sorghum (Rooney et al., 2007; Mullet et al., 2014).

Materials and Methods
Staining of vascular bundles in Figure 2 was performed on transverse hand sections from the base of 10 cm wild type and pxy inflorescence stems. Plants were 4 weeks old and grown under long day conditions. Fresh sections were incubated for 5 min in 2% phloroglucinol; 95% ethanol prior to transfer to 3M HCl for 5 mins and mounted in 80% glycerol.

For analysis of lateral root initiation in wild type and pxy mutants (Figure 6), seeds were sorted for size (250-300um) and sterilized using a dichloroisocyanuric acid wash method prior to sowing on MS agar plates, where they were stratified at 4 °C for 2 days. Plates were placed vertically in 16 hour day growth chamber. 9 days after germination plates were scanned and lateral roots were counted for both genotypes. A T-test was performed to determine significance.

Acknowledgments
The authors gratefully acknowledge financial support from a Hellman fellowship to SMB, the Jo Kolk Study Fund from the VVAO to MES, and an EU-FP7 Marie Sklodowska-Curie fellowship to JPE.
Figure Legends

Figure 1. Morphology of *pxy* and *35S::CLE41* vascular bundles
Vascular bundles in transverse section from the base of the inflorescence stem of 8 week old plants of wild type (A), *35S::CLE41* (B), and *pxy* (C). Left hand panels show overall vascular bundle morphology; panels on the right show vascular tissue in close up. Phloem, procambium and xylem are marked with ph, pc and x respectively. Asterisks in (A) mark an organised cell file. Arrowheads in (B) and (C) mark cells intercalated with xylem that are not present in wild type. Scales are 50 µM (left panels) and 20 µM (right panels).

Figure 2. Lignin deposition in *pxy* mutants
Phloroglucinol stains lignols that are mostly present in lignin polymers in the secondary cell walls. Sections shown are from the base of 4 week old wild type (A), and *pxy* (B) inflorescence stems. In upper panels x marks xylem; ph marks the phloem; if marks interfascicular fibres. Arrowheads mark areas of the xylem where lignified secondary cell walls appear absent in wild type. These areas are reduced in *pxy*. Lower panels show close-ups with ‘v’ marking vessels. Arrows point to xylem parenchyma (p) which appear lignified in *pxy* mutants but not in wild type. Scales are 50 µM (upper panels) and 25 µM (lower).

Figure 3. Model showing BIN2 interactions that control vascular development
In the procambium (left panel) TDIF binds to PXY resulting in an interaction between PXY and BIN2, which in turn results in phosphorylation and proteolysis of the TF BES1. In contrast in the xylem (right panel), brassinosteroid binding to BRI receptors negatively regulates BIN2, preventing its phosphorylation. BES1 is therefore free to move to the nucleus and promote xylem differentiation.

Figure 4. Morphology of *pxy* and *er* mutant hypocotyls
Transverse sections of Col (A), *pxy* (B), *er* (C) and *pxy er* (D) hypocotyls. Upper panels show toluidine blue stained sections; lower panels aniline blue sections. In wild type (A) and *er* mutants (C), xylem are present in an organised vascular ring. Organisation is lost in *pxy* (B) and this phenotype is enhanced in *er pxy* (D). Organisation defects are characterised by intercalation of xylem and phloem, clearly seen in lower panels. Arrowheads mark phloem sieve plates (stained green with aniline blue) in positions where only xylem forms in wild type. Scales are 50 µM. Reprinted from Development 140:2224-2234.
Figure 5. Mechanical signals may align vascular cell divisions
(A) Tobacco pith explant prior to transfer into sterile culture. After transfer, the pith explant has an apparently random pattern of cell division (B), except in regions where pressure is applied (C). Here cells form repeated coplanar divisions reminiscent of the vascular cambium. Reprinted by permission from Macmillan Publishers Ltd: Nature 307:363-364, copyright (1984).

Figure 6. Lateral root formation in pxy mutants
(A) 9 day old wild type and pxy seedlings grown on vertical plates showing differences in lateral root emergence. (B) Quantification of lateral root number.

Figure 7. Vascular tissue in eto2 mutants
Vascular tissue from inflorescence stems of 10 week old wild type (A) and eto2 mutants (B) in transverse section. eto2 plans have more cells in vascular bundles (middle panels) and early onset of secondary growth in interfascicular (if) regions (upper and lower panels). Scales are 100, 50 and 25 µM in upper, middle and lower panels, respectively. Reprinted from PLoS Genet 8(11): e1002997.
References

Figure 1

A wild type

B 35S::CLE41

C pxy
Figure 2

A wild type

B pxy

Figure 2
82x91mm (300 x 300 DPI)
Figure 3

Figure 3
87x104mm (300 x 300 DPI)
Figure 4

A Col B pxy C er D pxy er

Figure 4
140x83mm (300 x 300 DPI)
Figure 6

A

WT pxy-5

B

Lateral root count

WT pxy-5

p=0.019

Figure 6

64x56mm (300 x 300 DPI)
Figure 7

139x217mm (300 x 300 DPI)