Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham Research Online
You are in:

Linking the morphology of fluvial fan systems to aquifer stratigraphy in the Sutlej-Yamuna plain of northwest India.

van Dijk, W. and Densmore, A.L. and Singh, A. and Gupta, S. and Sinha, R. and Mason, P.J. and Joshi, S.K. and Nayak, N. and Kumar, M. and Shekhar, S. and Kumar, D. and Rai, S.P. (2016) 'Linking the morphology of fluvial fan systems to aquifer stratigraphy in the Sutlej-Yamuna plain of northwest India.', Journal of geophysical research. Earth surface., 121 (2). pp. 201-222.

Abstract

The Indo–Gangetic foreland basin has some of the highest rates of groundwater extraction in the world, focused in the states of Punjab and Haryana in northwest India. Any assessment of the effects of extraction on groundwater variation requires understanding of the geometry and sedimentary architecture of the alluvial aquifers, which in turn are set by their geomorphic and depositional setting. To assess the overall architecture of the aquifer system, we used satellite imagery and digital elevation models to map the geomorphology of the Sutlej and Yamuna fan systems, while aquifer geometry was assessed using 243 wells that extend to ∼200 m depth. Aquifers formed by sandy-channel bodies in the subsurface of the Sutlej and Yamuna fans have a median thickness of 7 and 6 m, respectively, and follow heavy-tailed thickness distributions. These distributions along with evidence of persistence in aquifer fractions as determined from compensation analysis, indicate persistent reoccupation of channel positions, and suggest that the major aquifers consist of stacked, multi-storied channel bodies. The percentage of aquifer material in individual boreholes decreases down-fan, although the exponent on the aquifer-body thickness distribution remains similar, indicating that the total number of aquifer bodies decrease down-fan but that individual bodies do not thin appreciably, particularly on the Yamuna fan. The interfan area and the fan-marginal zone have thinner aquifers and a lower proportion of aquifer material, even in proximal locations. We conclude that geomorphic setting provides a first-order control on the thickness, geometry, and stacking pattern of aquifer bodies across this critical region.

Item Type:Article
Keywords:Alluvial aquifers, Aaquifer thickness, Fan sedimentation, Fan geomorphology, Alluvial architecture, Channel-body dimensions.
Full text:(AM) Accepted Manuscript
Available under License - Creative Commons Attribution.
Download PDF
(3881Kb)
Full text:(VoR) Version of Record
Available under License - Creative Commons Attribution.
Download PDF (Advance online version)
(3402Kb)
Full text:(VoR) Version of Record
Available under License - Creative Commons Attribution.
Download PDF
(3402Kb)
Status:Peer-reviewed
Publisher Web site:http://dx.doi.org/10.1002/2015JF003720
Publisher statement:© 2016. The Authors. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Date accepted:04 January 2016
Date deposited:18 January 2016
Date of first online publication:03 February 2016
Date first made open access:08 March 2016

Save or Share this output

Export:
Export
Look up in GoogleScholar