We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

Are ultra-faint galaxies at z = 6–8 responsible for cosmic reionization? Combined constraints from the Hubble Frontier Fields clusters and parallels.

Atek, H. and Richard, J. and Jauzac, M. and Kneib, J.-P. and Natarajan, P. and Limousin, M. and Schaerer, D. and Jullo, E. and Ebeling, H. and Egami, E. and Clément, B. (2015) 'Are ultra-faint galaxies at z = 6–8 responsible for cosmic reionization? Combined constraints from the Hubble Frontier Fields clusters and parallels.', Astrophysical journal., 814 (1). p. 69.


We use deep Hubble Space Telescope imaging of the Frontier Fields to accurately measure the galaxy rest-frame ultraviolet luminosity function (UV LF) in the redshift range z ~ 6–8. We combine observations in three lensing clusters, A2744, MACS 0416, and MACS 0717, and their associated parallel fields to select high-redshift dropout candidates. We use the latest lensing models to estimate the flux magnification and the effective survey volume in combination with completeness simulations performed in the source plane. We report the detection of 227 galaxy candidates at z = 6–7 and 25 candidates at z ~ 8. While the total survey area is about 4 arcmin2 in each parallel field, it drops to about 0.6–1 arcmin2 in the cluster core fields because of the strong lensing. We compute the UV LF at z ~ 7 using the combined galaxy sample and perform Monte Carlo simulations to determine the best-fit Schechter parameters. We are able to reliably constrain the LF down to an absolute magnitude of MUV = −15.25, which corresponds to 0.005 Lsstarf. More importantly, we find that the faint-end slope remains steep down to this magnitude limit with $\alpha =-{2.04}_{-0.17}^{+0.13}.$ We find a characteristic magnitude of ${M}^{\star }=-{20.89}_{-0.72}^{+0.60}$ and log(phgrsstarf) = $-{3.54}_{-0.45}^{+0.48}.$ Our results confirm the most recent results in deep blank fields but extend the LF measurements more than two magnitudes deeper. The UV LF at z ~ 8 is not very well constrained below MUV = −18 owing to the small number statistics and incompleteness uncertainties. To assess the contribution of galaxies to cosmic reionization, we derive the UV luminosity density at z ~ 7 by integrating the UV LF down to an observational limit of MUV = −15. We show that our determination of log(ρUV) = 26.2 ± 0.13 (erg s−1 Hz−1 Mpc−3) can be sufficient to maintain reionization with an escape fraction of ionizing radiation of fesc = 10%–15%. Future Hubble Frontier Fields observations will certainly improve the constraints on the UV LF at the epoch of reionization, paving the way to more ambitious programs using cosmic telescopes with the next generation of large aperture telescopes such as the James Webb Space Telescope and the European Extremely Large Telescope.

Item Type:Article
Keywords:Dark ages, reionization, first stars, Galaxies: high-redshift, Galaxies: luminosity function, mass function, Gravitational lensing: strong.
Full text:(VoR) Version of Record
Download PDF
Publisher Web site:
Publisher statement:© 2015. The American Astronomical Society. All rights reserved.
Date accepted:08 October 2015
Date deposited:11 February 2016
Date of first online publication:17 November 2015
Date first made open access:No date available

Save or Share this output

Look up in GoogleScholar