Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham Research Online
You are in:

An Arabidopsis gene regulatory network for secondary cell wall synthesis.

Taylor-Teeples, M. and Lin, L. and de Lucas, M. and Turco, G. and Toal, T.W. and Gaudinier, A. and Young, N.F. and Trabucco, G.M. and Veling, M.T. and Lamothe, R. and Handakumbura, P.P. and Xiong, G. and Wang, C. and Corwin, J. and Tsoukalas, A. and Zhang, L. and Ware, D. and Pauly, M. and Kliebenstein, D.J. and Dehesh, K. and Tagkopoulos, I. and Breton, G. and Pruneda-Paz, J.L. and Ahnert, S.E. and Kay, S.A. and Hazen, S.P. and Brady, S.M. (2014) 'An Arabidopsis gene regulatory network for secondary cell wall synthesis.', Nature., 517 (7536). pp. 571-575.

Abstract

The plant cell wall is an important factor for determining cell shape, function and response to the environment. Secondary cell walls, such as those found in xylem, are composed of cellulose, hemicelluloses and lignin and account for the bulk of plant biomass. The coordination between transcriptional regulation of synthesis for each polymer is complex and vital to cell function. A regulatory hierarchy of developmental switches has been proposed, although the full complement of regulators remains unknown. Here we present a protein–DNA network between Arabidopsis thaliana transcription factors and secondary cell wall metabolic genes with gene expression regulated by a series of feed-forward loops. This model allowed us to develop and validate new hypotheses about secondary wall gene regulation under abiotic stress. Distinct stresses are able to perturb targeted genes to potentially promote functional adaptation. These interactions will serve as a foundation for understanding the regulation of a complex, integral plant component.

Item Type:Article
Full text:(AM) Accepted Manuscript
Download PDF
(18562Kb)
Status:Peer-reviewed
Publisher Web site:http://dx.doi.org/10.1038/nature14099
Date accepted:20 November 2014
Date deposited:18 March 2016
Date of first online publication:24 December 2014
Date first made open access:No date available

Save or Share this output

Export:
Export
Look up in GoogleScholar