Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham Research Online
You are in:

FPGA-based fast detection with reduced sensor count for a fault-tolerant three-phase converter.

Shahbazi, M. and Poure, P. and Saadate, S. and Zolghadri, M.R. (2013) 'FPGA-based fast detection with reduced sensor count for a fault-tolerant three-phase converter.', IEEE transactions on industrial informatics., 9 (3). pp. 1343-1350.

Abstract

Fast fault detection (FD) and reconfiguration is necessary for fault tolerant power electronic converters in safety critical applications to prevent further damage and to make the continuity of service possible. The aim of this study is to minimize the number of the used additional voltage sensors in a fault tolerant three-phase converter. In this paper, first a practical implementation of a very fast FD scheme with reduced sensor number is discussed. Then, an optimization in this scheme is also presented to decrease the detection time. For FD, special time and voltage criterion are applied to observe the error in the estimated phase-to-phase voltages for a specific period of time. The proposed optimization is based on the fact that following a detectable fault, two line-to-line voltages will deviate from their respective estimated values. Fault detection is studied for a three-leg two-level fault tolerant converter. Control and FD systems are implemented on a single field-programmable gate array. First, hardware in the loop experiments are carried out to evaluate the implemented schemes. Then, fully experimental tests are performed. The results confirm good performance of the proposed detection schemes, the digital controller and the fault tolerant structure. It is shown that such methods can detect and locate a fault in a few tens of microseconds. In certain cases the optimized scheme can be faster up to 50%, and in the other cases they have the same detection time.

Item Type:Article
Full text:(AM) Accepted Manuscript
Download PDF
(6634Kb)
Status:Peer-reviewed
Publisher Web site:http://dx.doi.org/10.1109/TII.2012.2209665
Publisher statement:© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Date accepted:No date available
Date deposited:27 April 2016
Date of first online publication:20 July 2012
Date first made open access:No date available

Save or Share this output

Export:
Export
Look up in GoogleScholar