We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

The Fundamental Plane of star formation in galaxies revealed by the EAGLE hydrodynamical simulations.

Lagos, C. D. P. and Theuns, T. and Schaye, J. and Furlong, M. and Bower, R. G. and Schaller, M. and Crain, R. A. and Trayford, J. W. and Matthee, J. (2016) 'The Fundamental Plane of star formation in galaxies revealed by the EAGLE hydrodynamical simulations.', Monthly notices of the Royal Astronomical Society., 459 (3). pp. 26323-32650.


We investigate correlations between different physical properties of star-forming galaxies in the ‘Evolution and Assembly of GaLaxies and their Environments’ (EAGLE) cosmological hydrodynamical simulation suite over the redshift range 0 ≤ z ≤ 4.5. A principal component analysis reveals that neutral gas fraction (fgas,neutral), stellar mass (Mstellar) and star formation rate (SFR) account for most of the variance seen in the population, with galaxies tracing a two-dimensional, nearly flat, surface in the three-dimensional space of fgas, neutral–Mstellar–SFR with little scatter. The location of this plane varies little with redshift, whereas galaxies themselves move along the plane as their fgas, neutral and SFR drop with redshift. The positions of galaxies along the plane are highly correlated with gas metallicity. The metallicity can therefore be robustly predicted from fgas, neutral, or from the Mstellar and SFR. We argue that the appearance of this ‘Fundamental Plane of star formation’ is a consequence of self-regulation, with the plane's curvature set by the dependence of the SFR on gas density and metallicity. We analyse a large compilation of observations spanning the redshift range 0 ≲ z ≲ 3, and find that such a plane is also present in the data. The properties of the observed Fundamental Plane of star formation are in good agreement with EAGLE's predictions.

Item Type:Article
Full text:(VoR) Version of Record
Download PDF
Publisher Web site:
Publisher statement:This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2016 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.
Date accepted:23 March 2016
Date deposited:15 June 2016
Date of first online publication:01 April 2016
Date first made open access:15 June 2016

Save or Share this output

Look up in GoogleScholar