We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

A boundary element and level set based topology optimisation using sensitivity analysis.

Ullah, B. and Trevelyan, J. (2016) 'A boundary element and level set based topology optimisation using sensitivity analysis.', Engineering analysis with boundary elements., 70 . pp. 80-98.


The structural topology optimisation method presented in this paper is based on the boundary element method, level set method and shape sensitivity analysis for two-dimensional linear elastic problems. The proposed method automatically nucleates holes within the design domain during the optimisation process using a topological derivative based hole insertion criterion. The level set method is used to provide an implicit description of the structural geometry, which is capable of automatically handling topological changes, i.e. holes merging with each other or with the boundary. During the optimisation process non-uniform rational b-splines are fitted through the zero level set contours, which links an implicit geometry representation to its structural model. In addition, this provides an optimal design in standard CAD format, and without intermediate material densities, which can be directly used in other design processes. The proposed optimisation method is tested against different benchmark examples and the optimal geometries generated are in close agreement those available in the literature of topology optimisation.

Item Type:Article
Full text:(AM) Accepted Manuscript
Available under License - Creative Commons Attribution Non-commercial No Derivatives.
Download PDF
Publisher Web site:
Publisher statement:© 2016 This manuscript version is made available under the CC-BY-NC-ND 4.0 license
Date accepted:03 June 2016
Date deposited:20 June 2016
Date of first online publication:22 June 2016
Date first made open access:22 June 2017

Save or Share this output

Look up in GoogleScholar