Do cataclastic deformation bands form parallel to lines of no finite elongation (LNFE) or zero extension directions?

Jonathan Imber¹*, Tom Perry¹, Richard R. Jones² and Ruth H. Wightman¹,³

¹Department of Earth Sciences, Durham University, Durham, DH1 3LE, UK
²Geospatial Research Ltd., Department of Earth Sciences, Durham University, Durham, DH1 3LE, UK
³Now at: Midland Valley Exploration Ltd., 144 West George Street, Glasgow, G2 2HG, UK

*Corresponding author. Tel.: +44 (0)191 334 4307; fax: +44 (0)191 334 2301.
E-mail address: jonathan.imber@durham.ac.uk (J. Imber)

Abstract

Conjugate cataclastic deformation bands cut unconsolidated sand and gravel at McKinleyville, California, and dip shallowly towards the north-northeast and south-southwest. The acute dihedral angle between the two sets of deformation bands is 47° and is bisected by the sub-horizontal, north-northeast directed incremental and finite shortening directions. Trishear models of fault propagation folding above the McKinleyville fault predict two sets of LNFE (lines of no finite elongation) that plunge steeply and shallowly to the south and north. These predictions are inconsistent with deformation band orientations and suggest that deformation bands did not form parallel to these LNFE. During plane strain, zero extension directions with acute dihedral angles of 47° develop when the dilatancy rate \((dV/d\varepsilon_1)\) is -4.3. Experimental dilatancy rates for Vosges sandstone (cohesion > 0)
and unconsolidated Hostun sand suggest the deformation bands either developed parallel to zero extension directions or in accordance with the Mohr-Coulomb criterion, assuming initial porosities of 22% and 39%, respectively. An empirical relationship between $dV/d\varepsilon_1$, relative density and mean stress suggests that dilatancy rates for Vosges sandstone overestimate $dV/d\varepsilon_1$ at McKinleyville. Deformation bands at McKinleyville likely developed either in a Mohr-Coulomb orientation, or an intermediate orientation bounded by the Mohr-Coulomb (θ_C) and Roscoe (θ_R) angles.

Keywords: strain, dilation, deformation band, high porosity sandstone

1. Introduction

Structural geologists typically invoke the Mohr-Coulomb failure criterion to explain the orientations of shear fractures (faults) based on assumptions (or measurements) of the angle of internal friction and the orientations of the principal stresses. The Mohr-Coulomb relationship predicts that the angle, θ_C, between the fault and the direction of the maximum principal stress, σ_1, is given by

$$\theta_C = \pi/4 - \phi/2 \text{ (equation 1; e.g. see Bardet, 1990)}$$

where ϕ is the internal friction angle of the material. θ_C (“Mohr-Coulomb” orientation; Wolf et al., 2003) provides an accurate first-order description of the orientations of faults in different tectonic regimes (e.g. Anderson, 1951; Bésuelle and Rudnicki, 2004).

Despite the widespread acceptance of the Mohr-Coulomb failure criterion, attempts have been made to interpret fracture orientations in terms of strain geometry. Becker (1893) proposed that shear failure occurs parallel to planes of zero longitudinal strain, which were believed to coincide with circular sections of the finite strain ellipsoid. He hypothesised that: (1) rupture takes places along surfaces of maximum shear strain, and (2) that planes of maximum shear strain coincide with circular sections of the finite strain ellipsoid (Becker, 1893). This “strain ellipsoid” theory of rupture was eventually
discarded (Brace, 1961) due to the its inability to explain the orientations of shear failure surfaces commonly observed in laboratory deformation experiments, and because in a general triaxial strain ellipsoid (i.e. all three principal axes of finite strain have changed length) the surfaces of zero longitudinal strain define elliptical cones (e.g. see Sarkarinejad et al., 2011, fig. 1), not circular sections (Griggs, 1935).

Nevertheless, there has been renewed interest in using strain geometry to interpret shear fractures (e.g. Allmendinger, 1998; Watterson 1999; Cardozo et al., 2005; Jin and Groshong, 2006). This motivation stems in part from the advent of trishear models (Erslev 1991), which provide a detailed description of the heterogeneous strain at propagating fault tips, and a desire to use this information to predict the distribution and orientation of small-scale faults. A further motivation has been to develop a unified, strain-based model for interpreting geological shear structures, which encompasses both brittle faults (normally analysed in terms of stress) and macroscopically ductile shear zones (normally described in terms of strain) (Watterson 1999). Two hypotheses have been suggested: (1) that the lines of no finite elongation (LNFE) predicted by trishear models are proxies for minor shear fractures that develop at the tips of propagating faults during forced folding (here referred to as the “LNFE hypothesis”) (Allmendinger, 1998); and (2) that shear fractures in rock, soil or other granular materials form parallel to zero extension directions (here referred to as the “zero extension hypothesis”) (Roscoe, 1970; Watterson, 1999).

LNFE are the lines within the finite strain ellipsoid whose deformed length is equal to their undeformed length (Fig.1a) (Ramsay and Huber, 1983, p. 5). For a given finite strain, material lines that currently lie parallel to a LNFE will have a strain history involving elongation and contraction which have compensated each other; i.e. they are unlikely to have remained parallel to a LNFE throughout their deformation history (Ramsay and Huber, 1983), particularly when the finite strain is high. Zero extension directions are the directions in which the rate (or increment) of elongation is zero and in plane strain loading their orientation is expressed by

\[\theta_R = \pi/4 - \psi/2 \] (equation 2; e.g. see Bardet, 1990)
where θ_R ("Roscoe" orientation; Wolf et al., 2003) is the inclination of the zero extension directions with respect to the axis of maximum principal strain rate (or increment). ψ is the angle of dilation. For plane strain, $\sin \psi = -(d\varepsilon_1 + d\varepsilon_3) / (d\varepsilon_1 - d\varepsilon_3)$. $d\varepsilon_1$ and $d\varepsilon_3$ are the maximum and minimum principal strain rates (or increments), respectively (Fig. 1b) (Bardet, 1990).

The aim of this paper is to compare predictions of the LNFE and zero extension hypotheses with the orientations of two sets of apparently conjugate, cataclastic deformation bands that cut unconsolidated, late Pleistocene marine terrace sands at McKinleyville, northern California (Cashman and Cashman, 2000). There are three reasons why the structures at McKinleyville are suitable for this purpose. First, there is nothing unusual about the orientations of the deformation bands at McKinleyville, which have been described as indicative of "Coulomb fracture failure" (Carver and Aalto, 1992). If the LNFE and/or zero extension hypotheses are valid, they should be capable of explaining the orientation of these deformation bands. Second, the neotectonic loading configuration that led to the development of the cataclastic deformation bands is known, at least to a first order, and lends itself to trishear forward modelling. Finally, the shallow burial depth and unconsolidated nature of the host sediments at McKinleyville allow comparison of our findings with experimental and theoretical studies in soil mechanics, from which many of the observations and theories concerning the deformation of sand originated (e.g. Roscoe, 1970; Vermeer, 1990; Bardet 1990).

We start by summarising recent studies that suggest strain geometry can be used to predict shear fracture orientations, and then describe the cataclastic deformation bands at McKinleyville. Next, we compare the observed deformation band orientations with the predictions of the LNFE and zero extension hypotheses, before discussing our results in the light of experimental and theoretical findings in the soil mechanics literature. We conclude that cataclastic deformation bands at McKinleyville are unlikely to have developed parallel to LNFE or zero extension directions, but could plausibly have formed in a Mohr-Coulomb orientation, or at an angle intermediate between θ_C and θ_R.
2. Summary of previous work and basis for using strain geometry to predict shear fracture orientations

2.1. LNFE and shear fracture orientations

Allmendinger (1998) provided an intuitive explanation for why shear fractures might form along LNFE. This explanation is based on the observation that shear planes are directions of no finite elongation during simple shear, as exemplified by the card deck shearing experiment known to all structural geology students (Ramsay and Huber, 1983, fig. 1.1). Ramsay and Huber (1983, equation D.10) showed that the orientations of LNFE with respect to the principal axis of finite strain can be calculated if the quadratic extensions are known, using

\[\tan^2 \alpha = \frac{\lambda_2(\lambda_1 - 1)}{\lambda_1(1 - \lambda_2)} \]

where \(\alpha \) is the angle between the LNFE and the maximum principal axis of finite strain (X), and \(\lambda_1 \) and \(\lambda_2 \) are the maximum and minimum quadratic extensions, respectively (Fig. 1a, inset). This equation can also be used to determine how the acute angle between the two sets of LNFE (2\(\alpha \)) changes with the magnitude of finite strain (expressed by the ellipticity, R; see Ramsay and Huber, 1983, p. 31) (Fig. 1a).

Allmendinger (1998) and Jin and Groshong (2006) presented experimental observations to support the LNFE hypothesis. These authors found that the LNFE predicted by trishear models of forced folding above an extensional fault matched the orientations of minor fractures in scaled clay models (e.g. Withjack et al., 1990). In both cases, traces of steeply dipping shear fractures within the clay models were parallel to one set of (steeply plunging) LNFE (Allmendinger, 1998, fig. 9; Jin and Groshong, 2005, fig. 10). The second set of LNFE did not correspond to fractures in the clay models, but rotated passively during the deformation (Allmendinger 1998). Field observations also appear to be consistent with the LNFE hypothesis. Cardozo et al. (2005) compared LNFE orientations predicted by a trishear model with the orientations of minor faults on the limbs of the Rip Van Winkle anticline, a fault propagation fold in the Hudson Valley fold-and-thrust belt, eastern New York. Minor faults observed...
in the forelimb of the anticline and the set of LNFE antithetic to the main fault plane were both oriented parallel to steeply-dipping bedding planes. The authors concluded from the best-fit trishear model that minor faults on the forelimb formed during a late stage of folding, at a point in the deformation history when the antithetic set of LNFE were oriented parallel to bedding. However, neither set of LNFE were consistent with the orientations of minor faults located in the footwall syncline ahead of the propagating thrust (Cardozo et al., 2005, fig. 13b).

These observations lend support to the hypothesis that trishear-predicted LNFE are proxies for minor shear planes, but raise two issues. First, the authors did not present a strain-based criterion to predict whether shear fractures will develop parallel to one, or both, sets of LNFE. Second, although comparisons between trishear models and minor shear fractures in clay models suggest that fracturing occurs within regions of highest finite strain (Allmendinger, 1998; Jin and Groshong, 2006), there are no criteria to predict at what magnitude of finite strain (i.e. at what stage during the development of a fault propagation fold) minor shear fractures will initiate.

2.2. Zero extension directions and shear fracture orientations

The prediction that shear fractures form parallel to zero extension directions is based on two requirements: (1) to maintain strain compatibility between a localised shear zone and its less-deformed matrix; and (2) that the localised deformation within a shear zone must have its components of principal strain rate (or strain increment) in the same ratio to each other as those of the bulk deformation. If these conditions are met, assuming plastic flow occurs at a constant stress (the yield stress) and the principal axes of stress and plastic strain rate (or strain increment) coincide, then localised shear zones will develop parallel to planes in which the extension rate is zero (Bowden and Jukes, 1972). Roscoe (1970) described a series of deformation experiments in which Leighton Buzzard sand was deformed under a variety of plane strain loading configurations. These experiments, in which the principal axes of stress and strain rate did not rotate, showed that “rupture surfaces” (shear bands) within the sand formed parallel to one set of zero extension directions. In turn, the
orientations of the zero extension directions with respect to the axis of maximum principal strain rate depended upon the angle of dilation (e.g. Roscoe, 1970, figs 6, 7, 23 and 24) (equation 2).

Watterson (1999) used a Mohr circle construction to predict the orientations of zero extension directions during uniaxial and plane strain loading (e.g. Fig. 1b). Shear fractures that develop during uniaxial shortening experiments are typically inclined at ca. 30° to the shortening direction. The volume strain increment (dV) required for the zero extension directions to be inclined at 30° to the shortening direction is five times the maximum principal strain increment (dε1), i.e. dV/dε1 = -5 at the onset of fracture localisation (adopting the soil mechanics convention of shortening or contraction being positive and dV/dε1 being the “dilatancy rate”; Bolton, 1986). Application of the same dilatancy rate (dV/dε1 = -5) to plane strain loading results in zero extension directions that are inclined at 22° to the shortening direction, which would correspond to a normal fault dip of 68° (Watterson, 1999, fig. 6). These observations and arguments are consistent with the hypothesis that shear fractures develop parallel to zero extension directions. However, the dilatancy rates predicted above have not been verified experimentally (Watterson, 1999), nor is it clear the extent to which the requirements and assumptions described by Bowden and Jukes (1972) are met during natural deformation.

3. Cataclastic deformation bands at McKinleyville

3.1. Geological setting

The studied outcrop is situated near McKinleyville, Humboldt County, California and lies within the overriding North American plate at the southern end of the Cascadia Subduction Zone (CSZ). Here, the CSZ is associated with a Quaternary fold-and-thrust-belt that is 85-100 km wide and extends along the western edge of the North American accretionary margin. The fold-and-thrust belt is exposed onshore in northern California where it comprises the north-west trending Mad River and Little Salmon fault zones separated by the 30 km wide Freshwater syncline (Fig. 2a). Quaternary sedimentation took place within isolated depocentres associated with the rapidly growing folds and thrusts (Carver, 1992). Focal mechanisms in the Humboldt Bay region are primarily reverse faults.
with some events having components of oblique- or strike-slip motion (McPherson, 1992). These mechanisms are consistent with a horizontal, north to north-northeast directed incremental shortening direction (d_{ε_1}) and north to north-northeast directed S_{Hmax} (Kreemer et al., 2003; Heidbach et al., 2008) (Fig. 2b).

The Mad River fault zone consists of multiple north-east dipping faults (including the McKinleyville fault), which thrust Cretaceous basement rocks (Franciscan complex) over early Pleistocene sediments (Falor Formation) (Fig. 2c; Carver, 1992). The principal faults dip $35^\circ \pm 10^\circ$ towards the north-east and may merge at depth as a single strand (Carver, 1992; McCrory, 1996). Carver (1987) attributes the development of asymmetric, NW-SE trending anticlines associated with the Mad River fault zone to fault propagation folding. The McKinleyville fault has experienced an average slip rate of 0.6 ± 0.2 mm/yr over the last ca. 200 ka (Petersen et al., 1996), whilst Clarke and Carver (1992) have reported at least two Holocene slip events, each of which resulted in ca. 3.5 m of dip slip along the McKinleyville fault.

Near the coast, the McKinleyville fault comprises two distinct segments (Fig. 3a) that cut a sequence (known informally as the “Mouth of Mad unit”; Harvey and Weppner, 1992) of unconsolidated nearshore and strand-plain sands that are locally inter-bedded with gravel beds and lenses and are overlain by < 5 m of mud-rich bay deposits (Miller and Morrison, 1988; Harvey and Weppner, 1992). These sediments were deposited during growth of the Quaternary fold-and-thrust belt, and are bounded above and below by unconformities (Harvey and Weppner, 1992). The Mouth of Mad unit is ca. 30 m thick and has been dated at 176 ± 33 ka by a single thermoluminescence date obtained from the mud-rich bay deposits (Berger et al., 1991).

We focus on NNE-SSW trending sea cliff exposures (located at 40°58′17″N; 124°07′07″W), where reverse faulting on the southern segment of the McKinleyville fault has created a ca. 150 m-wide belt of cataclastic deformation bands within the Mouth of Mad unit (Fig. 3b). Bedding is sub-horizontal (albeit locally cross-bedded) in the southern part of the cliff section, increasing in dip to ca. 20° SW, adjacent to the southern segment of the McKinleyville fault (Miller and Morrison, 1988; Carver and
There is no evidence that the bedding has been overturned within the studied exposures. The maximum burial depth was 50 m, limiting the confining pressure for the development of the cataclastic deformation bands to \(\leq 1 \) MPa (Cashman and Cashman, 2000). Unfortunately, the trace of the southern segment of the McKinleyville fault has been obscured by a recent landslip, ca. 50 m wide (Fig. 3b). Assuming that the fault plane dips at 35° (Petersen et al., 1996), and that the sea cliffs are 30 m high, this lack of exposure gives rise to a ca. 10 m horizontal uncertainty in the location of the fault trace at the coast. However, this uncertainty does not affect our overall conclusion that the deformation bands are unlikely to have developed parallel to LNFE or zero extension directions (sections 4 and 5).

3.2. Deformation band geometries

The cataclastic deformation bands form two prominent sets that dip towards the north-east and south-west, i.e. synthetic and antithetic to the McKinleyville Fault, respectively (Cashman and Cashman, 2000) (Fig. 4). A third, albeit less prominent set of sub-horizontal dilation bands is also present (Du Bernard et al., 2002). In order to collect an unbiased set of orientation data from the ca. 30 m high exposures, we carried out a terrestrial laser scan (ground-based LIDAR) survey of the sea cliffs (e.g. Jones et al. 2009). The resulting point-cloud data were textured using high-resolution, georeferenced digital photographs, allowing us to pick the traces of individual cataclastic deformation bands. Dilation bands were not clearly imaged within the textured point cloud data, so were not picked. We then used the relief on each deformation band trace to extrapolate a best-fit plane a short distance into/out of the outcrop (Jones et al., 2008). We sampled the orientations of 2256 deformation band planes, with a combined trace length of in excess of 3.7 km, along the ca. 150 m long NNE-SSW oriented exposure. A qualitative cross-check was made between the LIDAR-derived deformation band orientations and a subset of deformation band orientations measured directly in the field.

The two sets of cataclastic deformation bands mutually cross-cut each other, suggesting that both sets developed during the same deformation event (Fig. 4a). Individual deformation bands are sub-planar
features and occur singly, or form braided clusters up to 10 cm thick. Clusters of deformation bands are locally observed to displace gravel lenses or earlier-formed deformation bands by up to a few tens of centimetres, consistently in a reverse sense (Cashman and Cashman, 2000) (Fig. 4b). Figure 4c is a lower hemisphere equal area stereoplot showing poles to cataclastic deformation bands from across the entire outcrop. There is some scatter within this bulk dataset, but there are two distinct clusters associated with the north-east and south-west dipping bands. Inspection of high resolution digital photographs suggests there is no systematic change in the orientations of deformation bands at the interface between sands and inter-bedded gravel beds and lenses within the Mouth of Mad unit (Fig. 4b). The mean orientations have been estimated from a contoured stereoplot produced using R.J. Holcombe’s GEOrient software (Fig. 4d). A greater degree of accuracy is not required for the purposes of our analysis (sections 4 and 5). The two sets of deformation bands have mean dips of 21° towards 033° and 26° towards 200°, respectively. The acute dihedral angle between these two clusters is 47°, which is bisected by a line that plunges at 03° towards an azimuth of 206° (Fig. 4c, d). This acute bisector is sub-parallel to the regional incremental shortening direction (dε1) and S_{l\text{max}} (Kreemer et al., 2003; Heidbach et al., 2008) (Fig. 2b). From this relationship, and the local and regional thrust geometries in Figure 2a, c, we infer that incremental and finite shortening directions are both sub-horizontal and oriented approximately N-S to NNE-SSW. Thus, the sub-vertical, NNE-SSW trending cliff section is approximately parallel to: (1) the plane containing dε1 and dε3, the sub-horizontal and sub-vertical incremental shortening and extension directions, respectively; and (2) the plane containing Z and X, the sub-horizontal and sub-vertical finite shortening and extension directions, respectively. In reality, there is likely to be an angular difference between the incremental and finite strain axes due to the transpressional nature of the regional deformation (e.g. Fig. 2a); however, rotation of the finite strain axes is likely to be small given the low magnitude of bulk strain within the exposed outcrop at the time of deformation band formation (sections 3.3 and 4).

To assess the spatial variation in deformation band orientations across the outcrop, we sub-sampled the cataclastic deformation band orientations in 5 m intervals from north to south along the cliff section. The mean deformation band orientations, acute dihedral angle and bisector orientation within
each 5 m block were estimated from contoured stereoplots (see above) and are summarised in Fig. 5 and listed in Table 1. Gaps in the data relate to areas of no exposure associated with landslips (combined interval of 51 m), or intervals where two clusters of deformation bands cannot be defined on a stereoplot (combined interval of 25 m). Apart from the northernmost interval (15-20 m from start of section), which displays steep deformation band dips towards the northwest, there are no systematic changes in the mean orientations of the deformation band clusters, the value of the acute dihedral angle or the orientation of the acute bisector across the outcrop (Fig. 5).

3.3. Deformation band microstructure and finite strain

Cashman and Cashman (2000) have described the microstructure of the cataclastic deformation bands and compared this with the microstructure of undeformed sand from outside the bands. Undeformed sand has 22-23% porosity. The sand is poorly cemented by clay minerals, iron oxides and organic material (Du Bernard et al., 2002), but has little cohesion. Cements are preferentially concentrated along deformation bands. Du Bernard et al. (2002) summed measured clay content and residual porosity to obtain an upper bound on the porosity of undeformed sand of 38%, assuming any clay contained within the sand was infiltrated after deformation band formation. Within a deformation band that dips moderately to the north-east, has 39.5 cm of reverse-dip separation and ranges from 1.5 to 8 cm in width, skeleton porosity (pore space + authigenic phases) drops to 10%. According to Cashman and Cashman (2000), this volume reduction occurred due to compaction and closing of pore space within the cataclastic deformation bands during shearing. Cashman and Cashman (2000) carried out Fry analysis on samples adjacent to and within deformation bands. They found that strain ellipses outside the deformation bands are approximately equant (i.e. $R \sim 1$, implying negligible finite distortion), whilst strain ellipses within deformation bands have mean ellipticities (R) of 1.3 ± 0.2 (1 standard deviation), with minimum and maximum values of 1.1 and 1.7, respectively (Cashman and Cashman, 2000, fig. 6). The finite extension directions are oriented $27^\circ \pm 5.6^\circ$ (1 standard deviation) from the deformation band boundaries, and the sense of rotation of strain ellipses is consistent with
reverse slip on the deformation band shear zone (Cashman and Cashman, 2000, fig. 6). These observations suggest that strain had localized along the cataclastic deformation bands before detectable (at least using the Fry method) finite distortions had accumulated within the wall rocks. In other words, the magnitude of bulk strain within the Mouth of Mad unit is likely to have been low at the time of deformation band localization.

4. Did the cataclastic deformation bands at McKinleyville form along LNFE?

In this section, we test the hypothesis that lines of no finite elongation (LNFE) predicted by trishear models are proxies for minor shear fractures that develop at the tips of propagating faults during forced folding. In principle, trishear inverse modelling can be used to constrain a best-fit trishear model (e.g. Allmendinger, 1998; Cardozo et al., 2011). However, the cross-bedded and intermittently-exposed nature of the Mouth of Mad unit makes it difficult to trace individual beds, or groups of beds, for any distance across the studied outcrop. We therefore adopt a forward modelling approach using area-conserving, two-dimensional trishear to predict the orientations of LNFE near the tip of the McKinleyville fault, and compare these predictions with observed deformation band orientations. Given the limitations of forward modelling, we then use the relationship expressed in equation (3) to back-calculate the magnitude of bulk distortional strain (expressed as ellipticity, Rxz) required to produce the two sets of LNFE with an acute dihedral angle (2α) comparable to that of the deformation bands (Fig. 1a). If the hypothesis that both sets of deformation bands formed parallel to these LNFE is correct, the calculated bulk distortional strain (expressed as ellipticity) should be no greater than the ellipticities estimated by Fry analysis (Cashman and Cashman, 2000).
4.1. Comparison with two-dimensional trishear models

We used the trishear forward modelling functionality within Midland Valley Exploration’s 2DMove software to predict the magnitude of bulk finite strain (expressed by the ellipticity, R_{xz}) and LNFE orientations within the Mouth of Mad unit. Figure 6 shows the geometry of the trishear models. The models are 35 m thick and are oriented north-northeast-south-southwest (approximate dip lines). The thrust plane dips at 35° (cf. Petersen et al., 1996). Age dating shows that the Mouth of Mad unit was deposited during growth of the regional fold-and-thrust belt (section 3.1). However, we did not observe unequivocal field evidence for growth (thickening) within the Mouth of Mad unit toward the footwall of the McKinleyville fault; for simplicity, all strata were therefore modelled as being pre-growth.

We conducted tests using a range of different apical angles (50°, 70° and 90°) and maximum thrust displacements (10 m, 20 m, 30 m, 40 m and 56 m). 56 m displacement is a reasonable upper limit on the post-late Pleistocene displacement along the southern segment of the McKinleyville fault, assuming that slip was partitioned between the northern and southern fault segments (section 3.1; Fig. 2). A larger apical angle results in a wider zone of trishear deformation, whilst a bigger thrust displacement gives rise to larger magnitudes of finite strain in the hanging wall and footwall. We selected a propagation-slip (p/s) ratio of 1.6, which is mid-way between the values used by Jin and Groshong (2006) to model deformation of massive sandstone (p/s = 1.2) and interbedded carbonate-clastic (p/s = 2.0) sequences. In general, higher p/s ratios lead to a greater degree of rigid-body translation and lower amounts of wall rock strain.

Figure 7 shows how the ellipticities (R) vary with distance along the section for trishear models with apical angles of 50° and 90°, and maximum thrust displacements of 10 m (Fig. 7a) and 56 m (Fig. 7b). We have estimated the location of the landslip (grey band) and extent of the studied outcrop (dashed line) (Fig. 7) by comparing the modelled bed dips with those observed at McKinleyville (section 3.1). Ellipticities have been plotted at ca. 5 m intervals along the topmost layer shown in Figure 6. For models with maximum thrust displacements of 10 m and 56 m, the maximum ellipticity predicted
within the exposed part of the outcrop is ca. 1.2 (Fig. 7). The ellipticities decrease to negligible values southward across the studied section. This prediction is consistent with the observed decrease in bed dips southward away from the southern segment of the McKinleyville fault (section 3.1), and provides confidence that trishear is appropriate to model strains at the tip of the McKinleyville fault.

Figure 8 shows how the orientations of the two sets of LNFE, the dihedral angle between LNFE (2α) and the plunge of the acute bisector (i.e. the line that bisects the acute dihedral angle between pairs of LNFE) vary with distance along the section for trishear models with apical angles of 50° and 90°, and maximum thrust displacements of 10 m and 56 m. Positive angles refer to southward plunging LNFE and acute bisectors; negative angles refer to northward plunges. These modelled attributes can be compared directly to the field observations (Fig. 5, Table 1). We have again estimated the location of the landslip (grey band) and extent of the studied outcrop (dashed line) in each model (Fig. 8) by comparing the predicted bed dips with those observed at McKinleyville (section 3.1). Data are plotted at ca. 5 m intervals along the topmost layer shown in Figure 6 (cf. Table 1).

In models with a maximum thrust offset of 10 m (Fig. 8a, b), the inclination of the southward-plunging set of LNFE increases from 30-40° at the northern end of the model to 70-80° in the south. There is little correspondence between the plunges of these LNFE and the southward-dipping deformation bands, although this conclusion is sensitive to the estimated location of the landslip in the models (Fig. 8a, b). By contrast, the inclination of the northward-plunging set of LNFE decreases from 60-70° in the north to 15-20° in the south (Fig. 8a, b). For models with a trishear apical angle of 90°, there is good correspondence between the northward-plunging set of LNFE and the northward-dipping set of deformation bands at the southern end of the studied section (Figs 4, 8b, Table 1).

In models with a maximum thrust offset of 56 m (Fig. 8c, d), the southward-plunging set of LNFE is characterised by plunges that range from 25-85° in the hanging wall of the thrust (i.e. at the northern end of the studied section), and 80-90° in the footwall. These LNFE plunge more steeply than typical southward-dipping deformation bands. The plunge of the northward-plunging set of LNFE ranges from 75-45° in the hanging wall of the thrust, to 5-30° in the footwall. Most of the northward-
plunging LNFE are shallower than northward-dipping deformation bands exposed in the footwall
section (Figs 4, 8c, d, Table 1). However, this conclusion is again sensitive to the estimated location
of the landslip in the models (Fig. 8c, d).

The dihedral angle \(2\alpha\) and the plunge of the acute bisector between pairs of LNFE should
correspond to the dihedral angle and acute bisector between the two sets of deformation bands (Fig. 5,
Table 1) if, at any point along the studied section, both sets of deformation bands formed parallel to
LNFE. In all models, the dihedral angle between LNFE \(2\alpha\) increases from north to south, with
values ranging from ca. 25\(^\circ\) adjacent to the thrust tip (e.g. Fig. 8c), to 80-90\(^\circ\) in the southern part of
the studied section (Fig. 8). The plunge of the acute bisector between pairs of LNFE ranges from 45-
90\(^\circ\), which is significantly more than the sub-horizontal plunge of the acute bisector between the two
sets of deformation bands (Fig 5p). At no point in the models do the dihedral angle \(2\alpha\) and plunge of
the acute bisector both correspond to typical values associated with the deformation bands (ca. 47\(^\circ\
and 05\(^\circ\), respectively; Fig. 4, Table 1). These results suggest either that the trishear parameters used in
this study are not appropriate, or that the two sets of deformation bands do not develop parallel to
LNFE.

4.2. Analysis of deformation band dihedral angles

To test these conclusions, we assume \textit{a priori} that the cataclastic deformation bands developed
parallel to LNFE. We use the acute dihedral angles measured between sets of deformation bands
within each 5 m interval (Fig. 5, Table 1) to calculate the magnitude of bulk distortional strain
(expressed by ellipticity, Rxz) required to produce two sets of LNFE with this dihedral angle
(equation 3 and Fig. 1a). The calculated ellipticities are then compared with the ellipticities measured
using the Fry method by Cashman and Cashman (2000). This analysis makes no assumptions about
the loading configuration at the time of deformation band localisation and is independent of the
trishear model set-up.
Figure 9 shows that for a constant area deformation, the relationship expressed in equation 3 consistently predicts ellipticities that are between 2 and 12 times greater than the ellipticities measured within cataclastic deformation bands by Cashman and Cashman (2000) (1.3 ± 0.2; Fig. 9). In other words, the magnitude of bulk distortion required for the deformation bands (in their present-day orientations) to have developed parallel to LNFE would need to be greater than the local distortion measured within deformation bands. Bulk distortions resulting in large ellipticities (2 < R < 14; Fig. 9) prior to and during localisation of deformation bands should be evident from Fry analysis of wall rock samples; however, negligible strains have been recorded within the wall rocks (R ~ 1; section 3.3) (Cashman and Cashman, 2000). It is difficult to envisage a scenario in which the bulk strains recorded by the wall rock ellipticities are greater than the strains recorded within deformation bands, along which slip has localised. It could be argued that the deformation bands formed along LNFE at lower bulk strains (i.e. with a larger dihedral angle) and that subsequent bulk distortional strain reduced the dihedral angle between the two sets of deformation bands. However, this suggestion is again inconsistent with the low ellipticities recorded in the wall rocks. The simplest conclusion – that does not require special circumstances for which there is little compelling evidence – is that the cataclastic deformation bands at McKinleyville did not form parallel to lines of no finite elongation.

5. Did the cataclastic deformation bands at McKinleyville form along zero extension directions?

So far, we have neglected the effects of volume strain (dilatancy) during deformation band localisation. Dilatancy influences the orientations of zero extension directions (equation 2) and is an important process during deformation band formation (Roscoe, 1970; Aydin et al., 2006). We now apply the Mohr construction presented by Bowden and Jukes (1972), Bolton (1986) and adapted by Watterson (1999) to investigate the effects of dilatancy on the orientations of zero extension directions in the Mouth of Mad unit. We estimate the dilatancy rate (dV/dε1) required to produce the
observed deformation band orientations by assuming a priori that the two sets of cataclastic deformation bands formed parallel to zero extension directions (i.e. $\theta_R = 23.5^\circ$, equation 2). $dV/d\varepsilon_1$ so determined can be compared with dilatancy rates obtained from experimental studies.

5.1. Analysis of volume strain

We adopt the soil mechanics convention that contraction and shortening are positive and assume that: (1) the maximum principal strain increment, $d\varepsilon_1$, is sub-horizontal and parallel to the shortening direction; and (2) the minimum principal strain increment, $d\varepsilon_3$, is extensional and sub-vertical (section 3.2). Incremental volume strains (dV) are expressed by $dV = d\varepsilon_1 + d\varepsilon_2 + d\varepsilon_3$. We follow Watterson (1999) in assuming that the dilational component of extension is parallel to $d\varepsilon_3$ during plane strain, and there is no dilational component along $d\varepsilon_1$ or $d\varepsilon_2$.

If both sets of deformation bands developed along zero extension directions, the angle between $d\varepsilon_1$ and either of the zero extension directions measured in the $d\varepsilon_1d\varepsilon_3$ plane (θ_R) is given by half the measured acute dihedral angle (Fig. 1b). Double angles are used in the Mohr construction, so the zero extension directions in the $d\varepsilon_1d\varepsilon_3$ plane can be found at the point where a line drawn from the centre of the Mohr’s circle, at an angle $2\theta_R$ measured anticlockwise from $d\varepsilon_1$ intersects the vertical axis at $d\varepsilon = 0$ (Fig. 1c). An incremental volume increase will shift the centre of the Mohr’s circle to the left; volume strains that produce zero extension directions consistent with the observed deformation band geometries can therefore be deduced from the Mohr diagram (Fig. 1b).

Figure 10a shows that isovolumetric plane strain deformation results in two sets of zero extension directions at 45° to $d\varepsilon_1$ (i.e., $2\theta_R = 90^\circ$) (Watterson, 1999). It can be seen from the geometry of the Mohr diagram that an incremental volume increase is required to produce an acute dihedral angle between the two sets of zero extension directions (Fig. 10a). Assuming plane strain loading, the incremental volume strain (dV) as a proportion of $d\varepsilon_1$ required to produce an acute angle ($2\theta_R$) of 47° (equivalent to the mean dihedral angle between the two sets of deformation bands; Fig. 4) between the zero extension directions is $dV/d\varepsilon_1 = -4.3$ (Fig. 10a). This value equates to a dilation angle (ψ) of 43°,

and is similar to $\frac{dV}{d\varepsilon_1} = -5$, which was calculated by Watterson (1999) to explain the orientations of shear fractures that develop in uniaxial shortening experiments (section 2.2). For oblate strain (which, it could be argued, is more applicable than plane strain to transpressive deformation; Fig. 2a), a dilatancy rate of -9.6 would be required to produce an angle of 47° between zero extension directions. By way of comparison, a friction angle (ϕ) of 43° would be required for the two sets of deformation bands to have developed in a “Mohr-Coulomb” orientation (equation 1). Figure 10b shows the predicted spatial variation in dilatancy rate, based on variation in dihedral angle between the two sets of cataclastic deformation bands from north to south along the section (Fig. 5, Table 1). $\frac{dV}{d\varepsilon_1}$ ranges from -12 approximately two-thirds of the way along the section to -1.1 at the northernmost point. The mean value is -4.7.

5.2. Comparison with experimental studies of deformation band localisation in poorly consolidated sandstone and unconsolidated sand

There is geological evidence for dilatancy during deformation band localisation at McKinleyville. Du Bernard et al. (2002) argued that the lack of macroscopic shear offset along sub-horizontal bands (section 3.2) is consistent with a predominantly opening-mode failure. This finding is supported by microstructural observations, which show that the porosity within these dilation bands is 7% higher than that of the host sand. Field relationships suggest that dilation bands developed in the tensile quadrants of adjacent cataclastic deformation bands (Du Bernard et al., 2002, figs 2 and 6). However, our limited observations of localised dilation bands provide little information on the bulk volume strains that controlled the orientations of zero extension directions at the onset of deformation band localisation. We therefore consider previous laboratory deformation experiments that allow direct estimates of the incremental volume strain (dV) and axial shortening ($d\varepsilon_1$) during and prior to deformation band localisation.

Bésuelle et al. (2000) performed a series of triaxial deformation experiments on specimens of Vosges sandstone at confining pressures of 0.1 and 10 MPa, and then at further increments of 10 MPa up to a
maximum confining pressure of 60 MPa. The first two experiments encompass the likely range of confining pressures (≤ 1 MPa) experienced by the Mouth of Mad unit. The Vosges sandstone is poorly cemented but, unlike the Mouth of Mad unit, has some cohesion due to suturing of grains. It has a porosity of ca. 22% (Bésuelle et al., 2000), which is similar to the lower bound on the porosity of undeformed sands at McKinleyville (22-23%).

Desrues and Viggiani (2004) described the results of biaxial deformation experiments on unconsolidated Hostun sand at confining pressures between 0.1 and 0.8 MPa. The initial porosity was ca. 39%, which is close to the upper bound on the porosity of undeformed sands at McKinleyville (38%) (section 3.3). For both sets of experiments, we have used published graphs of: (1) deviatoric stress (σ₁ - σ₃) or stress ratio ([σ₁ - σ₃] / [σ₁ + σ₃]) versus axial strain; and (2) volume strain versus axial strain to estimate the dilatancy rate (dV/dε₁) during the final increment of axial shortening prior to peak stress (see Bésuelle et al., 2000, fig. 3; Desrues and Viggiani, 2004, figs 11 and 13). In each case, this increment corresponds to 10% of the total axial shortening at peak stress. For plane strain (biaxial) experiments, we also estimated the angle of dilation (ψ) according to

$$\sin \psi = - \frac{(dV/d\varepsilon_1)}{(2 - dV/d\varepsilon_1)} \text{ (equation 4; Schanz and Vermeer, 1996).}$$

Measured in this way, we obtain estimates of dV/dε₁ (and ψ) immediately prior to peak stress. For Vosges sandstone, deformation band localisation takes place at a decreasing fraction of peak stress as the confining pressure increases (see Bésuelle et al., 2000, fig. 11), but this effect does not greatly influence our estimates of dV/dε₁ at low the confining pressures relevant to McKinleyville.

For Vosges sandstone with an initial porosity of 22%, dV/dε₁ is ca. -8.5 and -2.8 at confining pressures of 0.1 and 10 MPa, respectively. These dilatancy rates bracket dV/dε₁ = -4.3 predicted for plane strain deformation within the Mouth of Mad unit at ca. 1 MPa confining pressure. At higher confining pressures of 20, 30 and 40 MPa, dilatancy rates are -1.5, -0.8 and -0.08, respectively (Fig. 11a). The dilatancy rate at 50 MPa confining pressure is close to zero, whilst at 60 MPa, the sandstone shows continual contraction. For triaxial loading, these dilatancy rates would give rise to zero extension directions inclined at between 25° and 54° to the shortening axis at confining pressures
between 0.1 and 40 MPa (Fig. 11b). By contrast, the Mohr-Coulomb relationship (Bésuelle et al., 2000, fig. 20) predicts that the deformation bands should be oriented at between 24° and 54° with respect to the maximum principal stress at confining pressures between 0.1 and 60 MPa. Overall, the majority of deformation band orientations appear to lie between the limits defined by the Roscoe and Mohr-Coulomb orientations, consistent with theoretical predictions (Fig. 11b and section 6).

Hostun sand, with an initial porosity of 39%, is characterised by dilatancy rates (dV/dε₁) of -0.60, -0.55, -0.46 and -0.34 at confining pressures of 0.1, 0.2, 0.4 and 0.8 MPa, respectively. These values correspond to dilation angles of 13°, 13°, 11° and 8.4° (Fig. 11a); all are significantly lower than the dilation angle (ψ = 43°) required by the zero extension hypothesis to explain deformation band orientations at McKinleyville (section 5.1). For biaxial loading, these dilatancy rates would give rise to zero extension directions (“Roscoe” orientations) inclined at between 38° and 41° to the shortening axis at confining pressures between 0.1 and 0.8 MPa (Fig. 11c). By contrast, the Mohr-Coulomb relationship (Desrues & Viggiani, 2004, their table IV) predicts that the deformation bands should be oriented at between 21° and 24° with respect to the maximum principal stress at confining pressures between 0.1 and 0.8 MPa. Overall, the observed deformation band orientations appear to lie between the limits defined by the Roscoe and Mohr-Coulomb orientations, and are closest to the Mohr-Coulomb orientation at low confining pressures (Fig. 11c).

The two sets of experiments highlight the well-known result that dilatancy rate is sensitive to both confining pressure (Watterson, 1999) and initial porosity (e.g. Bolton, 1986). The experiments described by Bésuelle et al. (2000) suggest that high dilatancy rates (in the order of dV/dε₁ = -4.3, as calculated in section 5.1) may have been possible during deformation at low confining pressure within the Mouth of Mad unit provided the initial porosity was close to the estimated lower bound of 22-23% (Fig. 11a). On the other hand, biaxial deformation of Hostun sand suggests that the deformation bands at McKinleyville could have developed in a Mohr-Coulomb orientation (i.e. θ_c = 23.5°, equation 1), assuming an initial porosity of 39% (close to the upper bound), peak friction angle (φ) of 43° and confining pressure of 0.8 MPa (Fig. 11c). It is therefore important to consider the differences in mechanical behaviour between Vosges sandstone (cohesion > 0) and unconsolidated sand (Wang and
Leung, 2008). A well-established empirical relationship between dilatancy rate, mean stress and relative density can be applied to Desrues and Viggiani's (2004) results for Hostun sand to estimate the dilatancy rate of unconsolidated sand with an initial porosity of 22% (Bolton, 1986, his equation 17, using minimum and maximum void ratios for Hostun sand obtained from Flavigny et al., 1990 and mean stresses obtained from Desrues et al., 2007, their Tables 1 and 2). This relationship indicates a threefold (or smaller) increase in dilatancy rate relative to Hostun sand with an initial porosity of 39%, equating to \(\frac{dV}{d\varepsilon_1} \) of ca. -1.5 and -1 at a confining pressures of 0.1 and 0.8 MPa, respectively. Although imprecise, this result suggests that experimental data for Vosges sandstone overestimates the likely range of dilatancy rates that existed within the Mouth of Mad unit. Indeed, the dilatancy rate obtained for Vosges sandstone appears to be significantly higher than dilatancy rates obtained from other porous sandstones (Nguyen et al., 2011). Finally, both sets of experiments show that deformation band orientations are not perfectly consistent with either the Roscoe or Mohr-Coulomb orientations across the entire range of confining pressures tested. We conclude that the experimental data lend, at best, equivocal support to the hypothesis that the cataclastic deformation bands at McKinleyville developed along zero extension directions. We therefore turn to theoretical studies of displacement discontinuities and strain localisation in granular materials to further evaluate the relationship between deformation band orientations and zero extension directions.

6. Discussion

Houlsby and Wroth (1980) investigated the restrictions placed on the orientation of an infinitesimally thick deformation band by the constitutive behaviours of different materials undergoing plane strain deformation. They assumed that the longitudinal strain rate (or strain increment) within the deformation band is infinitesimally small and that the principal axes of stress and strain rate coincide. Static equilibrium across the boundaries of the deformation band requires that the tractions on the plane of the deformation band should be the same within the band and surrounding regions. For granular materials with an associated flow rule, the friction angle and angle of dilation are the same,
i.e. $\varphi = \psi$ (e.g. Vermeer and de Borst, 1984, p. 8). In this case, Houlsby and Wroth (1980) demonstrated that deformation bands can only develop along zero extension directions. By contrast, deformation bands in granular materials with a non-associated flow rule ($\psi < \varphi$) can either develop parallel to the zero extension directions, or oblique to these directions such that the deformation band undergoes longitudinal shortening or extension (Houlsby and Wroth, 1980). Unconsolidated sands such as the Mouth of Mad unit possess negligible cohesion and are most likely characterised by non-associated flow in which $\psi < \varphi$ (Vermeer and de Borst, 1984, p. 28). The possibility that deformation bands formed oblique to the zero extension directions is therefore to be expected at McKinleyville.

Vermeer (1990 and references therein) reviewed experimental data on deformation band localisation in granular materials during plane strain (biaxial) loading. He showed that experimental attempts to prove deformation bands develop in either Mohr-Coulomb or Roscoe orientations were inconclusive. The data showed that deformation bands in homogeneous granular materials undergoing biaxial deformation with fixed principal stress directions are oriented at a specific angle, which varies according to grain size, between the limits θ_C (equation 1) and θ_R, (equation 2). In general, deformation band orientations change from θ_C to θ_R with increasing grain size (Arthur et al., 1977; Vermeer, 1990; Wolf et al., 2003), i.e. deformation bands might be expected to form parallel to zero extension directions in coarse granular materials, such as gravel beds or lenses.

Vermeer (1990) used a bifurcation analysis including the effects of elastic unloading within material outside the deformation band to demonstrate that all orientations of deformation bands between θ_C to θ_R are admissible. Extending this analysis to the post-failure regime shows that localisation of deformation bands with a Mohr-Coulomb orientation (θ_C) results in softening, and a discontinuity in deformation band-parallel stresses inside and outside the band. By contrast, localisation of deformation bands with a Roscoe orientation (θ_R) neither results in softening, nor a stress discontinuity (Vermeer, 1990, figs 7 and 8). Deformation band width is related to particle size, so a drop in band-parallel stress would yield large out-of-balance forces at the terminations of Mohr-Coulomb-type deformation bands in coarse grained aggregates. Such forces would be minimised at the tips of Roscoe-type deformation bands. Vermeer (1990) proposed that bands with Roscoe
orientations are likely to develop in coarse grained specimens undergoing biaxial deformation, an argument that applies to laboratory experiments in which the deformation bands interact with cell boundaries, and particle sizes are comparable to the thickness of the rubber membrane surrounding the samples (Vermeer, 1990). At McKinleyville, grain size does not appear to be an important influence on deformation band orientation (section 3.2) and the thickness of deformation bands is negligible compared to the dimensions of the Mouth of Mad unit. Furthermore, the proximity to the free surface at the time of deformation band formation suggests out-of-balance forces may not have been a critical control on the orientations of long, continuous deformation bands. We therefore see no compelling argument that the deformation bands at McKinleyville necessarily developed parallel to zero extension directions, even within coarse gravel lenses. A more likely scenario based on the experimental results and this brief review of theoretical studies, is that the deformation bands at McKinleyville formed either in a Mohr-Coulomb orientation, or at an intermediate angle between θ_C and θ_R.

An immediate implication of our findings is that using kinematic or strain-based models to predict the orientations of minor shear fracture orientations using either LNFE or zero extension directions should be treated with caution. However, Roscoe angles obtained from zero extension directions may provide one limit on potential deformation band orientations, the other limit being given by the Mohr-Coulomb relationship. Our attempt to apply the results of deformation experiments to McKinleyville highlights the importance of constitutive behaviour (expressed here by φ and ψ, which are broadly analogous to the friction coefficient, μ, and dilatancy factor, β, used in bifurcation analyses, e.g. Rudnicki and Rice, 1975; Bésuelle, 2001) in controlling deformation band localisation, and suggests to us that purely strain-based approaches to predicting shear fracture orientations may not be successful.
7. Conclusions

1. Cataclastic deformation bands that cut unconsolidated sand (porosity 22-38%) and gravel within the late Pleistocene Mouth of Mad unit exposed in sea cliffs near McKinleyville, Humboldt County, California form two distinct sets that dip shallowly towards the north-northeast and south-southwest. The acute dihedral angle between the two sets of deformation bands is ca. 47° and is bisected by the sub-horizontal, north-northeast incremental and finite shortening (compression) directions.

2. Two-dimensional, area-conserving trishear models of fault propagation folding above the initially buried tip of the McKinleyville Fault predict two sets of LNFE (lines of no finite elongation) that plunge steeply and shallowly to the south and north, respectively. At no point in the models do both the acute dihedral angle between LNFE and the orientation of the acute bisector correspond, respectively, to the acute dihedral angle between the two sets deformation bands and the orientation of the incremental and finite shortening direction. The ellipticities (R) required for the acute dihedral angle between the two sets of LNFE to match the acute dihedral angles observed between conjugate deformation bands is greater than the ellipticities estimated by Fry analysis within the deformation bands and the wall rocks. These results suggest that deformation bands did not form parallel to these LNFE.

3. A Mohr construction for plane strain loading shows that zero extension directions with an acute dihedral angle of 47° develop where the dilatancy rate (dV/dε₁) is -4.3, equivalent to an angle of dilation (ψ) of 43°. Comparison with previous triaxial deformation experiments on poorly cemented Vosges sandstone suggest that large dilatancy rates (between -8.5 to -2.4) may have been possible during deformation at McKinleyville, provided confining pressure was < 10 MPa and the initial porosity was close to 22%. Conversely, the results of biaxial deformation experiments on unconsolidated Hostun sand suggest that the deformation bands could have developed in a Mohr-Coulomb orientation, assuming a friction angle (φ) of 43° and an initial porosity of 39%. Application of an established empirical relationship between dilatancy rate,
mean stress and relative density suggests that dilatancy rates for Vosges sandstone are likely to
overestimate the range of dilatancy rates within the Mouth of Mad unit, assuming cohesion was
negligible at the time of deformation.

4. Previous arguments to explain the occurrence of deformation bands parallel to zero extension
directions in coarse grained specimens undergoing biaxial loading are unlikely to apply at
McKinleyville where (1) there is no obvious change in the orientation of deformation bands at
the interface between sands and inter-bedded gravel lenses; (2) deformation bands have
negligible thickness compared with the extent of the Mouth of Mad unit; and (3) deformation
bands developed in close proximity to the free surface. We conclude that deformation bands at
McKinleyville are most likely to have developed either in an orientation consistent with the
Mohr-Coulomb failure criterion, or at an intermediate angle between θ_C and θ_R.

Acknowledgements

We acknowledge BG Group, Shell, Geospatial Research Ltd. and the UK Department of Trade and
Industry (now BIS) for funding the ITF-brokered Fractured Reservoirs 3D Digital Atlas Project
(FR3DA) at Durham University. Scott Wilkins and Sue Cashman are thanked for introducing RRJ and
RHW to the McKinleyville outcrop, and for discussion in the field. Midland Valley Exploration Ltd.
provided Move v.2009.1 software to the Department of Earth Sciences at Durham University under
their Academic Software Initiative. We acknowledge R.J. Holcombe for free use of GEOrient 9.2 to
produce the stereoplots. Richard Lisle, Néstor Cardozo and David Sanderson provided constructive
comments; however, any remaining errors or misconceptions are our own.

References

Allmendinger, R.W., 1998. Inverse and forward numerical modeling of trishear fault-propagation
folds. Tectonics 17, 640-656.

importance of high resolution, quantitative outcrop analogues. In: Griffiths, P., Hegre, J., Robinson,
A., Price, S. (Eds.), The Future of Geological Modelling in Hydrocarbon Development, The

Jones, R.R., Kokkalas, S., McCaffrey, K.J.W., 2009. Quantitative analysis and visualization of
nonplanar fault surfaces using terrestrial laser scanning (LIDAR) – The Arkitsa fault, central Greece,
as a case study. Geosphere 5, 465-482.

and plate boundary deformation, Geophysical Journal International 154, 8-34.

McPherson, R.C., 1992. Seismicity and stress at the southern end of the Cascadia subduction zone. In:
Carver, G.A., Aalto, K.R. (Eds.), Field guide to the Late Cenozoic subduction tectonics and
sedimentation of northern coastal California, GB-71, Pacific Section, American Association of

Miller, W., Morrison, S.D., 1988. Marginal marine Pleistocene fossils from near mouth of Mad River,

Nguyen, Si.-H., Chemenda, A.I., Ambre, J., 2011. Influence of the loading conditions on the
mechanical response of granular materials as constrained from experimental tests on synthetic rock

Petersen, M.D., Bryant, W.A., Cramer, C.H., Cao, T., Reichle, M., Frankel, A.D., Lienkaemper, J.J.,
California. California Department of Conservation, Division of Mines and Geology, Open-File Report
96-08.

Figure captions

Fig. 1. (a) Graph showing the acute angle between LNFE (2α) versus ellipticity, (R_{xz}) for a constant area deformation. Inset shows the finite strain ellipse, an undeformed circular marker and the two lines of no finite elongation (LNFE). 2α is the acute angle between the two sets of LNFE; α is the angle between the LNFE and the maximum principal axis of finite strain. λ_1 and λ_2 are the maximum and minimum quadratic extensions. X and Z are the maximum and minimum principal axes of finite strain. (b) Mohr’s circle for strain increment. $d\varepsilon$ and $d\gamma$ are the axes of incremental longitudinal and shear strain, respectively. $d\varepsilon_1$ and $d\varepsilon_3$ are the principal axes of shortening and extension increment, respectively. θ_R is the angle between $d\varepsilon_1$ and the zero extension directions. ψ is the angle of dilation. Inset shows two sets of deformation bands (bold lines) that are assumed to have developed along zero extension directions. Modified from Bardet (1990, fig. 1).

Fig. 2. (a) Simplified tectonic map showing the main structures associated with the southern part of the Cascadia Subduction Zone in northern California. MRfz = Mad River fault zone; LSfz = Little Salmon fault zone; Fs = Freshwater syncline; Mtj = Medocino triple junction. SG-NA gives the motion of the South Gorda plate relative to a fixed North American Plate. Box shows approximate location of Fig. 2b. (b) Map showing the coastline of part of Humboldt County (solid line) and strain rate (arrows) and maximum horizontal stress ($S_{H_{\text{max}}}$) directions. Length of arrows is proportional to the strain rate. Star (*) gives approximate location of the study area. Strain rates from Kreemer et al. (2003); stresses from Heidbach et al. (2008). Map based on image created using the UNAVCO Jules Verne Voyager. (c) NE-SW cross-section through the Mad River fault zone showing Cretaceous basement rocks (diagonal shading) thrust over early Pleistocene Falor Formation sediments (grey). Location shown in Fig. 2b. (a) and (c) are simplified from Carver (1992).

Fig. 3. (a) Structural map showing the thrust faults in the McKinleyville area and the location of the studied section. Simplified from the USGS California Quaternary Faults database (USGS, 2011). Box gives the approximate location of Fig. 3b. (b) Overview from Google Earth showing part of the McKinleyville fault and the studied section. Line of section (white double-headed arrow) is ca. 150 m
The length of Highway 101 is approximately 40°58′17″N; 124°07′07″W. North is to the left; reflective cylinder (circled) is 11 cm in diameter. Two prominent sets of cataclastic deformation bands cut the unconsolidated sands. The acute angle between the two sets of deformation bands is highlighted and the sub-horizontal acute bisector is represented by an arrow. (b) Photograph showing a gravel bed that has been cut and offset by a south-dipping cataclastic deformation band (arrow). There is no discernible change in the orientation of this deformation band as it passes from sand into gravel. North is to the left; survey peg (circled) is 10 cm high. (c) Lower hemisphere equal area stereoplot showing poles to cataclastic deformation bands, n = 2256. Great circles show the mean deformation band orientations estimated from a contoured stereoplot; asterisk is the acute bisector of the great circles. (d) Contoured stereoplot for the dataset in (c). Contours are % per 1% area, with contour interval as shown. Great circles and asterisk the same as in (c).

Fig. 5. (a) – (o) Lower hemisphere equal area stereoplots showing poles to cataclastic deformation bands for 5 m intervals along the outcrop, as listed in Table 1. Great circles are the best-fit planes to each cluster, estimated from contoured stereoplots. (a) is at the northern extremity of the outcrop; (o) is at the southern limit. (p) Lower hemisphere equal area stereoplot showing the acute bisectors of the pairs of great circles shown in (a) – (o). n is the number of data points in each stereoplot. (q) Overview from Google Earth showing the studied outcrop. (a-c), (d-h) and (i-o) show the approximate locations of each stereoplot. (1) and (2) are the traces of the southern and northern segments of the McKinleyville fault, respectively. (“101”) is Highway 101.

Fig. 6. Schematic diagram showing the template used for the two-dimensional trishear modelling. The vertical section is oriented 010°-190°. The circles represent unit circles inscribed on four layers within the template and used to determine the ellipticities and LNFE orientations after deformation. Locations of unit circles are schematic to enhance clarity – unit circles were spaced every 5 m in the models. The approximate location of the landslip shown in Figs 3b and 5q is highlighted.
Fig. 7. Graphs showing the variation in ellipticity (Rxz) calculated by the trishear forward model across the studied section for total thrust offsets along the southern segment of the McKinleyville fault of (a) 10 m and (b) 56 m. Both graphs show models with trishear apical angles of 50° and 90°. Note the different vertical scales in (a) and (b). In (a) the thrust has not yet propagated through the marker layer (Fig. 6); in (b) the thrust has propagated through the marker layer. The grey shading illustrates the approximate location of the landslip shown in Figs 3b and 5q. The dashed line shows the location of the present day outcrop in each model. Note that in the model, the footwall is pinned so the hanging wall (including the landslip) effectively moves to the right (south) with increasing thrust displacement.

Fig. 8. Graphs showing the plunge of the two sets of LNFE, acute dihedral angle between LNFE and plunge of the acute bisector between LNFE versus distance along the studied section. (a) Model with a maximum thrust offset of 10 m and apical angle of 50°. (b) Model with a maximum thrust offset of 10 m and apical angle of 90°. (c) Model with a maximum thrust offset of 56 m and apical angle of 50°. (d) Model with a maximum thrust offset of 56 m and apical angle of 50°. For clarity in (c) and (d), data have been plotted separately for the footwall and hanging wall of the faults. In all parts, the grey shading illustrates the approximate location of the landslip shown in Figs 3b and 5q. Positive angles refer to southward plunging LNFE and southward plunging acute bisectors; negative angles refer to northward dips and plunges.

Fig. 9. Graph of ellipticity (Rxz) versus distance along the section assuming a priori the two sets of deformation bands developed parallel to LNFE. Ellipticities have been calculated from the mean dihedral angles between the two sets of deformation bands (Table 1) using the relationship between ellipticity and dihedral angle (2α) shown in Fig. 1a. North is to the left. The shaded bar shows the range of ellipticities obtained by Cashman and Cashman (2000) from Fry analysis of cataclastic deformation band samples.

Fig. 10. (a) Mohr constructions for plane strain deformation (dε2 = 0). dε and dγ are the axes of incremental longitudinal and shear strain, respectively. dε1 and dε3 are the principal axes of incremental shortening and extension, respectively. Dashed lines are used to determine the zero
extension directions. $2\theta_R$ is the acute angle between pairs of zero extension directions (Fig. 1b). Grey
Mohr’s circle is for isovolumetric deformation. Black Mohr’s circle shows the dilation required for
$2\theta_R = 47^\circ$ during plane strain deformation. (b) Graph showing the variation in dilatancy rate (plotted
as $-d\nu/d\varepsilon_1$) versus distance along the studied section assuming a priori that the two sets of cataclastic
deformation bands formed along zero extension directions. Dilatancy rates have been calculated from
the mean dihedral angles between the two sets of deformation bands (Table 1) using a Mohr
construction similar to (a).

Fig. 11. (a) Graph showing dilatancy rate (plotted as $-d\nu/d\varepsilon_1$) versus confining pressure for Vosges
sandstone and Hostun sand. Dilatancy rates estimated from data presented by Bésuelle et al. (2000, fig.
3) (Vosges sandstone) and Desrues and Viggiani (2004, figs 11 and 13 and Table IV) (Hostun sand).
(b) Graph showing the orientations of deformation bands produced during triaxial deformation of
Vosges sandstone versus confining pressure. “Roscoe orientation” shows the orientation of zero
extension directions determined from the dilatancy rates in (a) assuming oblate strain ($d\varepsilon_2 = d\varepsilon_3$).
“Coulomb orientation” shows the orientation of deformation bands predicted by the Mohr-Coulomb
failure criterion (equation 1). Friction angles have been estimated from the failure envelope presented
by Bésuelle et al. (2000, fig. 20). (c) Graph showing the orientations of deformation bands produced
during biaxial deformation of Hostun sand versus confining pressure. “Roscoe orientation” shows the
orientation of zero extension directions determined from the dilatancy rates in (a) assuming plane
strain ($d\varepsilon_2 = 0$). Friction angles have been obtained from Desrues and Viggiani (2004, their Table IV).

<table>
<thead>
<tr>
<th>Distance from start of section (m)</th>
<th>n</th>
<th>Set 1 (dip/dip direction)</th>
<th>Set 2 (dip/dip direction)</th>
<th>Dihedral angle</th>
<th>Bisector orientation (plunge/azimuth)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 (north)</td>
<td>a</td>
<td>165 58/307</td>
<td>21/190</td>
<td>69</td>
<td>21/325</td>
</tr>
<tr>
<td>20</td>
<td>b</td>
<td>124 26/044</td>
<td>22/187</td>
<td>45</td>
<td>02/027</td>
</tr>
<tr>
<td>30</td>
<td>c</td>
<td>113 29/032</td>
<td>24/195</td>
<td>52</td>
<td>03/024</td>
</tr>
<tr>
<td>Angle</td>
<td>Letter</td>
<td>n</td>
<td>Orientation 1</td>
<td>Orientation 2</td>
<td>Bisector 1</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>---</td>
<td>--------------</td>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>85</td>
<td>d</td>
<td>82</td>
<td>18/026</td>
<td>35/225</td>
<td>52</td>
</tr>
<tr>
<td>90</td>
<td>e</td>
<td>272</td>
<td>20/021</td>
<td>32/216</td>
<td>52</td>
</tr>
<tr>
<td>95</td>
<td>f</td>
<td>196</td>
<td>21/021</td>
<td>35/226</td>
<td>55</td>
</tr>
<tr>
<td>100</td>
<td>g</td>
<td>212</td>
<td>22/022</td>
<td>30/234</td>
<td>50</td>
</tr>
<tr>
<td>105</td>
<td>h</td>
<td>146</td>
<td>18/051</td>
<td>25/202</td>
<td>42</td>
</tr>
<tr>
<td>120</td>
<td>i</td>
<td>60</td>
<td>11/005</td>
<td>20/184</td>
<td>31</td>
</tr>
<tr>
<td>125</td>
<td>j</td>
<td>134</td>
<td>19/025</td>
<td>25/198</td>
<td>44</td>
</tr>
<tr>
<td>130</td>
<td>k</td>
<td>204</td>
<td>19/037</td>
<td>23/192</td>
<td>41</td>
</tr>
<tr>
<td>135</td>
<td>l</td>
<td>142</td>
<td>22/043</td>
<td>22/207</td>
<td>44</td>
</tr>
<tr>
<td>140</td>
<td>m</td>
<td>55</td>
<td>18/031</td>
<td>32/190</td>
<td>49</td>
</tr>
<tr>
<td>145</td>
<td>n</td>
<td>84</td>
<td>17/036</td>
<td>27/198</td>
<td>43</td>
</tr>
<tr>
<td>150 (south)</td>
<td>o</td>
<td>95</td>
<td>21/046</td>
<td>24/223</td>
<td>45</td>
</tr>
</tbody>
</table>

Table 1. Summary of the mean cataclastic deformation band orientations, acute dihedral angles and bisector orientations from north to south across the studied outcrop; n = number of deformation bands measured within each 5 m interval. * each letter corresponds to the appropriate stereoplot in Figure 4.
Imber et al. Fig. 1
Men ocino transf rm faud o lt

Gorda Plate

Pacific Plate

Pacific Plate

SG-NA

N

MRfz

LSfz

Fs

Cape Mendocino

North American Plate

Mtj

North American Plate

McKinleyville Fault

Blue Lake Fault

Trinidad Fault

Mad River Fault

Fickle Hill Fault

2 k m

2 k m

0 m (MSL)

Imber et al. Fig. 2
Arcata Airport
Modern beach
Landslip
101
1
2
Studied section
Pacific Ocean
McKinleyville Fault
Arcata
McKinleyville
1 km
1 km
Clam Beach
(a)
Imber et al. Fig. 3b

(b) Arcata Airport
Landslip
Studied section
Modern beach
1
2
101
N

Imber et al. Fig. 3
Imber et al. Fig. 4
Imber et al. Fig. 5
Apical angles: 90° 70° 50°

Exposed sands
Buried sed
Unconformity

Approx. location of landslip

Imber et al. Fig. 6
Imber et al. Fig. 7
Imber et al. Fig. 8
Imber et al. Fig. 9
Imber et al. Fig. 10
Imber et al. Fig. 11