Giani, S. and Houston, P. (2012) 'Anisotropic hp-adaptive discontinuous Galerkin finite element methods for compressible fluid flows.', International journal of numerical analysis and modeling., 9 (4). pp. 928-949.
Abstract
In this article we consider the construction of general isotropic and anisotropic adaptive mesh refinement strategies, as well as hp–mesh refinement techniques, for the numerical approximation of the compressible Euler and Navier–Stokes equations. To discretize the latter system of conservation laws, we exploit the (adjoint consistent) symmetric version of the interior penalty discontinuous Galerkin finite element method. The a posteriori error indicators are derived based on employing the dual-weighted-residual approach in order to control the error measured in terms of general target functionals of the solution; these error estimates involve the product of the finite element residuals with local weighting terms involving the solution of a certain adjoint problem that must be numerically approximated. This general approach leads to the design of economical finite element meshes specifically tailored to the computation of the target functional of interest, as well as providing efficient error estimation. Numerical experiments demonstrating the performance of the proposed adaptive algorithms will be presented.
Item Type: | Article |
---|---|
Full text: | Publisher-imposed embargo (AM) Accepted Manuscript File format - PDF (754Kb) |
Status: | Peer-reviewed |
Publisher Web site: | http://www.math.ualberta.ca/ijnam/Volume9.htm |
Date accepted: | No date available |
Date deposited: | 19 July 2016 |
Date of first online publication: | 2012 |
Date first made open access: | No date available |
Save or Share this output
Export: | |
Look up in GoogleScholar |