We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

Experimental investigation into the impact of a liquid droplet onto a granular bed using three-dimensional, time-resolved, particle tracking.

Long, E.J. and Hargrace, G.K. and Cooper, J.R. and Kitchener, B.G.B. and Parsons, A.J. and Hewett, C.J.M. and Wainwright, J. (2014) 'Experimental investigation into the impact of a liquid droplet onto a granular bed using three-dimensional, time-resolved, particle tracking.', Physical review E., 89 (3). 032201.


An experimental investigation into the interaction that occurs between an impacting water droplet and a granular bed of loose graded sand has been carried out. High-speed imaging, three-dimensional time-resolved particle tracking, and photogrammetric surface profiling have been used to examine individual impact events. The focus of the study is the quantification and trajectory analysis of the particles ejected from the sand bed, along with measurement of the change in bed morphology. The results from the experiments have detailed two distinct mechanisms of particle ejection: the ejection of water-encapsulated particles from the edge of the wetted region and the ejection of dry sand from the periphery of the impact crater. That the process occurs by these two distinct mechanisms has hitherto been unobserved. Presented in the paper are distributions of the particle ejection velocities, angles, and transport distances for both mechanisms. The ejected water-encapsulated particles, which are few in number, are characterized by low ejection angles and high ejection velocities, leading to large transport distances; the ejected dry particles, which are much greater in number, are characterized by high ejection angles and low velocities, leading to lower transport distances. From the particle ejection data, the momentum of the individual ballistic sand particles has been calculated; it was found that only 2% of the water-droplet momentum at impact is transferred to the ballistic sand particles. In addition to the particle tracking, surface profiling of the granular bed postimpact has provided detailed information on its morphology; these data have demonstrated the consistent nature of the craters produced by the impact and suggest that particle agglomerations released from their edges make up about twice the number of particles involved in ballistic ejection. It is estimated that, overall, about 4% of the water-droplet momentum is taken up in particle movement.

Item Type:Article
Full text:(VoR) Version of Record
Download PDF
Publisher Web site:
Publisher statement:Reprinted with permission from the American Physical Society: Physical Review E 89, 032201 © 2014 by the American Physical Society. Readers may view, browse, and/or download material for temporary copying purposes only, provided these uses are for noncommercial personal purposes. Except as provided by law, this material may not be further reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole or part, without prior written permission from the American Physical Society.
Date accepted:10 June 2014
Date deposited:23 August 2016
Date of first online publication:03 March 2014
Date first made open access:No date available

Save or Share this output

Look up in GoogleScholar