Skip to main content

Research Repository

Advanced Search

Testing the limits of NMR crystallography: the case of caffeine-citric acid hydrate

Kerr, Hannah E.; Mason, Helen E.; Sparkes, Hazel A.; Hodgkinson, Paul

Testing the limits of NMR crystallography: the case of caffeine-citric acid hydrate Thumbnail


Authors

Hannah E. Kerr

Helen E. Mason

Hazel A. Sparkes



Abstract

The crystal structure of a new 1 : 2 caffeine–citric acid hydrate cocrystal is presented. The caffeine molecules are disordered over two positions, with the nature of the disorder confirmed to be static by 13C solid-state NMR. NMR linewidths in statically disordered systems reflect the distribution of local chemical environments, and this study investigates whether the disorder contribution to 13C linewidths can be predicted computationally. The limits of NMR crystallography calculations using density functional theory are tested by investigating how geometry optimisation conditions affect calculated NMR parameters. Careful optimisation is shown to reduce differences between 13C constants of symmetry-related sites to about 0.1 ppm. This is just sufficient to observe a correlation between calculated and experimental linewidths, and also show that systematic errors associated with geometry optimisation do not compromise other applications of “NMR crystallography”. In addition, the unit cell enthalpies calculated after careful optimisations provide insight into why the disordered structure is adopted.

Citation

Kerr, H. E., Mason, H. E., Sparkes, H. A., & Hodgkinson, P. (2016). Testing the limits of NMR crystallography: the case of caffeine-citric acid hydrate. CrystEngComm, 18(35), 6700-6707. https://doi.org/10.1039/c6ce01453d

Journal Article Type Article
Acceptance Date Jul 25, 2016
Online Publication Date Aug 2, 2016
Publication Date Sep 21, 2016
Deposit Date Jul 22, 2016
Publicly Available Date Aug 23, 2016
Journal CrystEngComm
Publisher Royal Society of Chemistry
Peer Reviewed Peer Reviewed
Volume 18
Issue 35
Pages 6700-6707
DOI https://doi.org/10.1039/c6ce01453d

Files






You might also like



Downloadable Citations