Skip to main content

Research Repository

Advanced Search

Music from the heavens - gravitational waves from supermassive black hole mergers in the EAGLE simulations

Salcido, J.; Bower, R.G.; Theuns, T.; McAlpine, S.; Schaller, M.; Crain, R.A.; Schaye, J.; Regan, J.

Music from the heavens - gravitational waves from supermassive black hole mergers in the EAGLE simulations Thumbnail


Authors

J. Salcido

R.G. Bower

S. McAlpine

M. Schaller

R.A. Crain

J. Schaye

J. Regan



Abstract

We estimate the expected event rate of gravitational wave signals from mergers of supermassive black holes that could be resolved by a space-based interferometer, such as the Evolved Laser Interferometer Space Antenna (eLISA), utilizing the reference cosmological hydrodynamical simulation from the EAGLE suite. These simulations assume a Lambda cold dark matter cosmogony with state-of-the-art subgrid models for radiative cooling, star formation, stellar mass loss, and feedback from stars and accreting black holes. They have been shown to reproduce the observed galaxy population with unprecedented fidelity. We combine the merger rates of supermassive black holes in EAGLE with the latest phenomenological waveform models to calculate the gravitational waves signals from the intrinsic parameters of the merging black holes. The EAGLE models predict ∼2 detections per year by a gravitational wave detector such as eLISA. We find that these signals are largely dominated by mergers between seed mass black holes merging at redshifts between z ∼ 2 and z ∼ 1. In order to investigate the dependence on the assumed black hole seed mass, we introduce an additional model with a black hole seed mass an order of magnitude smaller than in our reference model. We also consider a variation of the reference model where a prescription for the expected delays in the black hole merger time-scale has been included after their host galaxies merge. We find that the merger rate is similar in all models, but that the initial black hole seed mass could be distinguished through their detected gravitational waveforms. Hence, the characteristic gravitational wave signals detected by eLISA will provide profound insight into the origin of supermassive black holes and the initial mass distribution of black hole seeds.

Citation

Salcido, J., Bower, R., Theuns, T., McAlpine, S., Schaller, M., Crain, R., …Regan, J. (2016). Music from the heavens - gravitational waves from supermassive black hole mergers in the EAGLE simulations. Monthly Notices of the Royal Astronomical Society, 463(1), 870-885. https://doi.org/10.1093/mnras/stw2048

Journal Article Type Article
Acceptance Date Aug 12, 2016
Online Publication Date Aug 16, 2016
Publication Date Aug 16, 2016
Deposit Date Sep 28, 2016
Publicly Available Date Mar 29, 2024
Journal Monthly Notices of the Royal Astronomical Society
Print ISSN 0035-8711
Electronic ISSN 1365-2966
Publisher Royal Astronomical Society
Peer Reviewed Peer Reviewed
Volume 463
Issue 1
Pages 870-885
DOI https://doi.org/10.1093/mnras/stw2048

Files

Published Journal Article (1.6 Mb)
PDF

Copyright Statement
This article has been published in Monthly Notices of the Royal Astronomical Society ©: 2016 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.





You might also like



Downloadable Citations