We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

Reduced fine sediment flux and channel change in response to the managed diversion of an upland river channel.

Perks, M.J. and Warburton, J. (2016) 'Reduced fine sediment flux and channel change in response to the managed diversion of an upland river channel.', Earth surface dynamics., 4 (3). pp. 705-719.


This paper describes the implementation of a novel mitigation approach and subsequent adaptive management, designed to reduce the transfer of fine sediment (< 2 mm) in Glaisdale Beck, a small, predominantly upland catchment in the UK. Hydro-meteorological and suspended sediment data sets are collected over a 2-year period spanning pre- and post-diversion periods in order to assess the impact of the channel reconfiguration scheme on the fluvial suspended sediment dynamics. Analysis of the river response demonstrates that the fluvial sediment system has become more restrictive with reduced fine sediment transfer. This is characterized by reductions in flow-weighted mean suspended sediment concentrations from 77.93 mg L−1 prior to mitigation, to 74.36 mg L−1 following the diversion. A Mann–Whitney U test found statistically significant differences (p < 0.001) between the pre- and post-monitoring median suspended sediment concentrations (SSCs). Whilst application of one-way analysis of covariance (ANCOVA) on the coefficients of sediment rating curves developed before and after the diversion found statistically significant differences (p < 0.001), with both Loga and b coefficients becoming smaller following the diversion. Non-parametric analysis indicates a reduction in residuals through time (p < 0.001), with the developed LOWESS model over-predicting sediment concentrations as the channel stabilizes. However, the channel is continuing to adjust to the reconfigured morphology, with evidence of a headward propagating knickpoint which has migrated 120 m at an exponentially decreasing rate over the last 7 years since diversion. The study demonstrates that channel reconfiguration can be effective in mitigating fine sediment flux in headwater streams but the full value of this may take many years to achieve whilst the fluvial system slowly readjusts.

Item Type:Article
Full text:(VoR) Version of Record
Available under License - Creative Commons Attribution.
Download PDF
Full text:(AM) Accepted Manuscript
Available under License - Creative Commons Attribution.
Download PDF
Publisher Web site:
Publisher statement:© Author(s) 2016. CC Attribution 3.0 License.
Date accepted:03 August 2016
Date deposited:18 October 2016
Date of first online publication:02 September 2016
Date first made open access:No date available

Save or Share this output

Look up in GoogleScholar