Skip to main content

Research Repository

Advanced Search

Phases of kinky holographic nuclear matter

Elliot-Ripley, M.; Sutcliffe, P.M.; Zamaklar, M.

Phases of kinky holographic nuclear matter Thumbnail


Authors

M. Elliot-Ripley



Abstract

Holographic QCD at finite baryon number density and zero temperature is studied within the five-dimensional Sakai-Sugimoto model. We introduce a new approximation that models a smeared crystal of solitonic baryons by assuming spatial homogeneity to obtain an effective kink theory in the holographic direction. The kink theory correctly reproduces a first order phase transition to lightly bound nuclear matter. As the density is further increased the kink splits into a pair of half-kink constituents, providing a concrete realization of the previously suggested dyonic salt phase, where the bulk soliton splits into constituents at high density. The kink model also captures the phenomenon of baryonic popcorn, in which a first order phase transition generates an additional soliton layer in the holographic direction. We find that this popcorn transition takes place at a density below the dyonic salt phase, making the latter energetically unfavourable. However, the kink model predicts only one pop, rather than the sequence of pops suggested by previous approximations. In the kink model the two layers produced by the single pop form the surface of a soliton bag that increases in size as the baryon chemical potential is increased. The interior of the bag is filled with abelian electric potential and the instanton charge density is localized on the surface of the bag. The soliton bag may provide a holographic description of a quarkyonic phase.

Citation

Elliot-Ripley, M., Sutcliffe, P., & Zamaklar, M. (2016). Phases of kinky holographic nuclear matter. Journal of High Energy Physics, 2016(10), Article 088. https://doi.org/10.1007/jhep10%282016%29088

Journal Article Type Article
Acceptance Date Oct 2, 2016
Online Publication Date Oct 17, 2016
Publication Date Oct 17, 2016
Deposit Date Oct 24, 2016
Publicly Available Date Mar 29, 2024
Journal Journal of High Energy Physics
Print ISSN 1126-6708
Publisher Scuola Internazionale Superiore di Studi Avanzati (SISSA)
Peer Reviewed Peer Reviewed
Volume 2016
Issue 10
Article Number 088
DOI https://doi.org/10.1007/jhep10%282016%29088

Files

Published Journal Article (771 Kb)
PDF

Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/

Copyright Statement
Open Access, © The Author(s) 2016 Article funded by SCOAP3. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.





You might also like



Downloadable Citations