We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

Engineering the singlet–triplet energy splitting in a TADF molecule.

Santos, Paloma L. and Ward, Jonathan S. and Data, Przemyslaw and Batsanov, Andrei S. and Bryce, Martin R. and Dias, Fernando B. and Monkman, Andrew P. (2016) 'Engineering the singlet–triplet energy splitting in a TADF molecule.', Journal of materials chemistry C., 4 (17). pp. 3815-3824.


The key to engineering an efficient TADF emitter is to achieve a small energy splitting between a pair of molecular singlet and triplet states. This work makes important contributions towards achieving this goal. By studying the new TADF emitter 2,7-bis(phenoxazin-10-yl)-9,9-dimethylthioxanthene-S,S-dioxide (DPO-TXO2) and the donor and acceptor units separately, the available radiative and non-radiative pathways of DPO-TXO2 have been identified. The energy splitting between singlet and triplet states was clearly identified in four different environments, in solutions and solid state. The results show that DPO-TXO2 is a promising TADF emitter, having ΔEST = 0.01 eV in zeonex matrix. We further show how the environment plays a key role in the fine tuning of the energy levels of the 1CT state with respect to the donor 3LED triplet state, which can then be used to control the ΔEST energy value. We elucidate the TADF mechanism dynamics when the 1CT state is located below the 3LE triplet state which it spin orbit couples to, and we also discuss the OLED device performance with this new emitter, which shows maximum external quantum efficiency (E.Q.E.) of 13.5% at 166 cd m−2.

Item Type:Article
Full text:(AM) Accepted Manuscript
Download PDF
Publisher Web site:
Date accepted:11 January 2016
Date deposited:09 November 2016
Date of first online publication:11 January 2016
Date first made open access:11 January 2017

Save or Share this output

Look up in GoogleScholar