Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham Research Online
You are in:

Earthquake source properties from pseudotachylite.

Beeler, N.M. and Di Toro, G. and Nielsen, S. (2016) 'Earthquake source properties from pseudotachylite.', Bulletin of the Seismological Society of America., 106 (6). pp. 2764-2776.

Abstract

Earthquake‐radiated motions contain information that can be interpreted as source displacement and therefore related to stress drop. Except in a few notable cases, these displacements cannot be easily related to the absolute stress level or the fault strength, or attributed to a particular physical mechanism. In contrast, paleoearthquakes recorded by exhumed pseudotachylite have a known dynamic mechanism whose properties constrain the coseismic fault strength. Pseudotachylite can be used to directly address a discrepancy between seismologically measured stress drops, which are typically a few MPa, and much larger dynamic stress drops expected from thermal weakening during slip at seismic speeds in crystalline rock (Mckenzie and Brune, 1972; Sibson, 1973; Lachenbruch, 1980; Mase and Smith, 1987; Rice, 2006), and as have been observed in laboratory experiments at high slip rates (Di Toro, Hirose, Nielsen, Pennacchioni, et al., 2006). This places pseudotachylite‐derived estimates of fault strength and inferred crustal stress within the context and bounds of naturally observed earthquake source parameters: apparent stress, stress drop, and overshoot, including consideration of fault‐surface roughness, off‐fault damage, fracture energy, and the strength excess. The analysis, which assumes stress drop is related to corner frequency as in the Madariaga (1976) source model, is restricted to earthquakes of the Gole Larghe fault zone in the Italian Alps, where the dynamic shear strength is well constrained by field and laboratory measurements. We find that radiated energy is similar to or exceeds the shear‐generated heat and that the maximum strength excess is ∼16  MPa. These events have inferred earthquake source parameters that are rare, for instance, a low percentage of the global earthquake population has stress drops as large, unless fracture energy is routinely greater than in existing models, pseudotachylite is not representative of the shear strength during the earthquake that generated it, or the strength excess is larger than we have allowed.

Item Type:Article
Full text:(VoR) Version of Record
Download PDF (Advance online version)
(473Kb)
Full text:(AM) Accepted Manuscript
Download PDF
(713Kb)
Status:Peer-reviewed
Publisher Web site:https://doi.org/10.1785/0120150344
Publisher statement:N. M. Beeler, Giulio Di Toro, and Stefan Nielsen Earthquake Source Properties from Pseudotachylite, Bulletin of the Seismological Society of America, December 2016, 106(6): 2764-2776 © Seismological Society of America.
Date accepted:02 July 2016
Date deposited:14 November 2016
Date of first online publication:25 October 2016
Date first made open access:25 October 2017

Save or Share this output

Export:
Export
Look up in GoogleScholar