Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham Research Online
You are in:

The dynamics of surges in the 3 February 2015 avalanches in Vallée de la Sionne.

Köhler, A. and McElwaine, J. N. and Sovilla, B. and Ash, M. and Brennan, P. (2016) 'The dynamics of surges in the 3 February 2015 avalanches in Vallée de la Sionne.', Journal of geophysical research. Earth surface., 121 (11). pp. 2192-2210.

Abstract

Five avalanches were artificially released at the Vallée de la Sionne test site in the west of Switzerland on 3 February 2015 and recorded by the GEOphysical flow dynamics using pulsed Doppler radAR Mark 3 radar system. The radar beam penetrates the dilute powder cloud and measures reflections from the underlying denser avalanche features allowing the tracking of the flow at 111 Hz with 0.75 m downslope resolution. The data show that the avalanches contain many internal surges. The large or “major” surges originate from the secondary release of slabs. These slabs can each contain more mass than the initial release, and thus can greatly affect the flow dynamics, by unevenly distributing the mass. The small or “minor” surges appear to be a roll wave-like instability, and these can greatly influence the front dynamics as they can repeatedly overtake the leading edge. We analyzed the friction acting on the fronts of minor surges using a Voellmy-like, simple one-dimensional model with frictional resistance and velocity-squared drag. This model fits the data of the overall velocity, but it cannot capture the dynamics and especially the slowing of the minor surges, which requires dramatically varying effective friction. Our findings suggest that current avalanche models based on Voellmy-like friction laws do not accurately describe the physics of the intermittent frontal region of large mixed avalanches. We suggest that these data can only be explained by changes in the snow surface, such as the entrainment of the upper snow layers and the smoothing by earlier flow fronts.

Item Type:Article
Full text:(VoR) Version of Record
Available under License - Creative Commons Attribution Non-commercial No Derivatives.
Download PDF (Advance online version)
(11142Kb)
Full text:(VoR) Version of Record
Available under License - Creative Commons Attribution Non-commercial No Derivatives.
Download PDF (Final published version)
(11096Kb)
Status:Peer-reviewed
Publisher Web site:https://doi.org/10.1002/2016JF003887
Publisher statement:©2016. The Authors. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
Date accepted:01 November 2016
Date deposited:28 November 2016
Date of first online publication:22 November 2016
Date first made open access:No date available

Save or Share this output

Export:
Export
Look up in GoogleScholar