Distal Pb-Zn-Ag veins associated with the world-class Donggou porphyry Mo deposit, southern North China craton

Zhan-Ke Li¹, Shi-Jian Bi¹, Jian-Wei Li¹,²*, Wen Zhang², David R. Cooke³, David Selby⁴

¹ Faculty of Earth Resources, China University of Geosciences, Wuhan, Hubei Province 430074, China
² State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan, Hubei Province 430074, China
³ Transforming the Mining Value Chain, CODES, University of Tasmania, Private Bag 79, Hobart, Tasmania, 7001, Australia
⁴ Department of Earth Sciences, University of Durham, Durham DH1 3LE, United Kingdom

† Corresponding author:
E-mail: jwli@cug.edu.cn
Ph: 00 86 138 71112076
Fax: 00 86 27 67885099
Abstract

The southern North China craton hosts numerous world-class porphyry Mo and Pb-Zn-Ag vein deposits. Whether or not the Pb-Zn-Ag veins are genetically associated with the porphyry Mo system remains contentious. Here we focus on the genetic relationships between the Sanyuangou Pb-Zn-Ag vein deposit and the world-class Donggou porphyry Mo deposit, and discuss the potential implications from the spatial and temporal relationships between porphyry and vein systems in the southern North China craton.

At Sanyuangou, vein-hosted sulfide mineralization mainly comprises pyrite, sphalerite, and galena, with minor chalcopyrite, pyrrhotite, bornite, tetrahedrite, covellite, polybasite and argentite. The mineralization is hosted by a quartz diorite stock, which has a zircon U-Pb age of 1756 ± 9 Ma. However, sericite from alteration selvages of Pb-Zn-Ag sulfide mineralization yields a well-defined $^{40}\text{Ar}/^{39}\text{Ar}$ plateau age of 115.9 ± 0.9 Ma. Although nominally younger, the sericite $^{40}\text{Ar}/^{39}\text{Ar}$ age is similar to the age of the nearby Donggou porphyry Mo deposit (zircon U-Pb age of 117.8 ± 0.9; molybdenite Re-Os ages of 117.5 ± 0.8 Ma and 116.4 ± 0.6 Ma). Pyrite from Donggou has elevated contents of Mo and Bi, whereas pyrite from Sanyuangou is enriched in Cu, Zn, Pb, Ag, Au, and As. This trace element pattern is consistent with metal zonation typically observed in porphyry related metallogenic systems. Pyrite grains from Sanyuangou have lead isotopes overlapping those from Donggou (17.273-17.495 vs. 17.328-17.517 for $^{206}\text{Pb}/^{204}\text{Pb}$, 15.431-15.566 vs. 15.408-15.551 for $^{207}\text{Pb}/^{204}\text{Pb}$, and 37.991-38.337 vs. 38.080-38.436 for $^{208}\text{Pb}/^{204}\text{Pb}$). Collectively, the geological, geochronological, and geochemical data support a magmatic-hydrothermal origin for the Sanyuangou Pb-Zn-Ag deposit and confirm that the Pb-Zn-Ag veins and the Donggou Mo deposit form a porphyry-related magmatic-hydrothermal system.

Given the widespread Pb-Zn-Ag veins and Mo mineralized porphyries in many districts of the southern North China craton, the model derived from this study has broad implications for further exploration of Mo and Pb-Zn-Ag resources in the area.

Key words: porphyry Mo deposit; Pb-Zn-Ag veins; geochronology; trace elements; in-situ lead isotopes; Donggou deposit
Introduction

Porphyry deposits are the world’s most important repositories of Cu and Mo (Sillitoe, 2000). They are commonly generated above subduction zones at convergent margins and are associated with contemporaneous calc-alkaline magmas (Richards 2003; Cooke et al., 2005; Seedorff et al., 2005). Some deposits, especially porphyry Mo deposits in continental collision setting, are associated with high K calc-alkaline to shoshonite magmas (e.g., Chen et al., 2004, 2016; Li et al., 2007; Mao et al., 2010). Porphyry-related base metal vein and replacement mineralization may form economically important Zn, Pb, Cu, and Au deposits proximal or distal to porphyry Cu and Mo deposits (Lang and Eastoe, 1988; Sillitoe, 2010; Catchpole et al., 2015). A continuum of porphyry-related mineralization styles was proposed by Sillitoe (1973) to explain the close spatial relationship of various hydrothermal deposit types (porphyry, skarn, base and precious metal veins, and epithermal deposits) in many porphyry systems. Geochemical footprints of the porphyry system commonly comprise a district-scale metal zonation of Cu-Mo through Zn-Pb to Ag-Au (Emmons, 1927; Jones, 1992; Dilles and Einaudi, 1992; Babcock et al., 1995; Seedorff et al., 2005; Sillitoe, 2010). Such metal zonation, when properly recognized, may provide useful exploration vectors to end-member mineralization styles in a porphyry related metallogenic system. A comprehensive geochronological and geochemical study is critically important in constraining a possible genetic link between porphyry and peripheral Zn-Pb-Cu-Ag-Au mineralization (e.g., Lawley et al., 2010; Schütte et al., 2012; Catchpole et al., 2015).

Large areas of the southern North China craton (NCC) host several giant mineral concentrations (Fig. 1). The Xiaoqinling district has been China’s second largest gold producer in the last three decades (Mao et al., 2002; Li et al., 2012a, 2012b). To the east, the Xiong’ershan district has traditionally been an important gold producer (Chen and Fu, 1992; Fan et al., 2000), but has also recently become the most important silver producer and a significant Zn-Pb source along the southern NCC (Chen et al., 2004; Mao et al., 2006; Li et al., 2010, 2013b). The Luonan-Lushi, Luanchuan and Waifangshan districts host several world-class porphyry Mo deposits (Fig. 1; Li et al., 2005; Ye et al., 2006; Mao et al., 2011). Molybdenite Re-Os dating has revealed two pulses of porphyry intrusion and porphyry-skarn Mo mineralization at 148-138 Ma and 131-112 Ma, respectively (Mao et al., 2008). These Mo deposits are unrelated to a convergent plate margin; rather they are located in intracontinental settings and are associated with high K calc-alkaline or alkaline felsic magmas induced
by thinning and destruction of lithosphere beneath this craton during the Late Jurassic to Early

In the last two decades, numerous Pb-Zn-Ag veins have been discovered in some of the Mo-
mineralized districts, such as the Lengshuibeigou deposit in the Luanchuan ore field (Fig. 1; Yan, 2004;
Qi et al., 2007; Wang et al., 2013). Genesis of these Pb-Zn-Ag veins is debated (e.g., Chen and Fu,
1992; Chen et al., 2004; Mao et al., 2006, 2011; Yao et al., 2008; Li et al., 2013b). Previous studies
interpret the Pb-Zn-Ag veins to be a porphyry-related (Ye, 2006; Mao et al., 2006, 2009, 2011; Wang
et al., 2013), or an orogenic-type system associated with the Triassic orogenic deformation involving
the continental collision between the North China and Yangtze cratons (Chen et al., 2004; Qi et al.,
2007; Yao et al., 2008).

The Fudian ore field in southern NCC (Fig. 1) hosts the giant Donggou porphyry Mo deposit and
numerous Pb-Zn-Ag vein deposits including Sanyuangou, Laodaizhanggou, and Wangpingxigou (Fig.
2). Current geochronologies for the Donggou porphyry Mo deposit are non-conclusive based on a
SHRIMP zircon U-Pb age of 112 ± 1 Ma for the Donggou porphyry and molybdenite Re-Os ages of
116.5 ± 1.7 to 114.1 ± 1.4 Ma for Mo-bearing quartz and K-feldspar veins (Ye et al., 2006; Mao et al.,
2008). In addition to the Donggou porphyry, several large granitoid intrusions and a number of diorite
dikes occur in the Fudian ore field (Fig. 2). Most Pb-Zn-Ag veins are in close proximity of or hosted by
these intrusions (Fig. 2), but the genetic relationship to the magmatic events has not been determined.
Alteration selvage sericite associated with a Pb-Zn-Ag vein of the Sanyuangou deposit (Fig. 2) has an
40Ar/39Ar plateau age of 110.1 ± 9.2 Ma (Ye, 2006), which is roughly consistent with a sphalerite Rb-Sr
isochron age of 117 ± 27 Ma for the Wangpingxigou Pb-Zn-Ag deposit (Fig. 2; Yao et al., 2010). The
large uncertainties of the 40Ar/39Ar and Rb-Sr ages for the Pb-Zn-Ag deposits and the discordance
between the U-Pb and Re-Os ages for the Donggou porphyry Mo deposit necessitates further precise
geochronological coupled with geochemical studies to evaluate a possible genetic link between
porphyry Mo and vein Pb-Zn-Ag mineralization.

Here we firstly present a comparative geochronology study (U-Pb, Re-Os, and 40Ar/39Ar) for the
Donggou porphyry Mo deposit and the Sanyuangou Pb-Zn-Ag vein deposit to assess their temporal
relationship. We further analyze trace elements of pyrite from both deposits using laser ablation ICP-
MS to investigate any geochemical affiliation between the two systems. Lastly, we use in-situ lead
isotopes of pyrite to evaluate any genetic link between the Pb-Zn-Ag and porphyry Mo systems.
Synthesis of existing geological and geochronological data provides a metallogenic model that may prove a useful exploration guide for porphyry Mo and Pb-Zn-Ag veins in the whole southern NCC.

Geologic setting

The Fudian ore field is located in the Waifangshan district of the southern NCC (Fig. 1). The NCC consists of the Western and Eastern Blocks that are separated by the Trans-North China Orogen (TNCO) formed during collision between the two blocks at ca. 1.85 Ga (Fig. 1). This collision resulted in the final amalgamation and stabilization of the craton (Zhao et al., 2001). The basement of the NCC is dominated by Archean to Paleoproterozoic high-grade metamorphic rocks that are variably overlain by Mesoproterozoic to Late Paleozoic unmetamorphosed marine sedimentary rocks (Zhao et al., 2000, and references therein). Although, the NCC behaved as a coherent, stable continental block from the Late Paleoproterozoic to the Late Paleozoic (Yang et al., 1986; Zhai, 2010), its margins were repeatedly affected by Late Paleozoic to Early Mesozoic subduction and orogenesis (Chen and Fu, 1992). During the Late Mesozoic, the NCC witnessed extensive magmatism (Wu et al., 2005; Mao et al., 2010), exhumation of numerous metamorphic core complexes (Fig. 1; Wang and Zhang, 1999; Zhang and Zheng, 1999; Shi et al., 2004), and development of intracontinental rift-basins (Ren et al., 2002). These tectonic signatures are interpreted to be a consequence of tectonic reactivation or lithospheric destruction of the eastern NCC, induced by the westerly subduction of the paleo-Pacific plate in Early Cretaceous (e.g., Zhu et al., 2012).

The southern NCC is dominated by the Late Archean to Early Paleoproterozoic Taihua and Xiong’er Groups (Fig. 1). The Taihua Group consists of amphibolite facies metamorphic rocks, mainly including amphibolite, felsic gneiss, khondalite, migmatite, and metasedimentary rocks intercalated with mafic to ultramafic rocks (Hu et al., 1988; Chen and Fu, 1992). The amphibolites have a whole-rock Sm-Nd isochron age of 2,542 ± 57 Ma (Zhou et al., 1998), whereas the felsic gneisses and khondalite series have zircon U-Pb ages of 2.6-2.3 and 2.2-2.18 Ga, respectively (Xu et al., 2009; Li et al., 2015). The Xiong’er Group is distributed widely in the Xiaoshan, Xiong’ershan, and Waifangshan districts. It is composed of volcanic rocks ranging in composition from basalt to rhyolite, but dominated by andesite, with minor intercalations of elastic rocks (Zhao et al., 2002; Peng et al., 2008). In-situ zircon U-Pb dating indicates that rocks of the Xiong’er Group mainly erupted between 1.8 and
1.75 Ga (Zhao et al., 2004; He et al., 2009; Zhao et al., 2009). Mesozoic and Cenozoic sedimentary rocks are locally present in the area (Fig. 1).

To the south, the southern NCC is separated from the North Qinling Terrane by the NW-oriented Luanchuan Fault (Fig. 1), which was generated during the Mesozoic continental collision between the Yangtze and North China cratons forming the Qinling Orogen (Dong et al., 2011). The Machaoying Fault is an important north-dipping regional structure in the southern NCC, extending for more than 200 km along an approximately easterly strike (Fig. 1). Interpretation of geophysical data indicates that the Machaoying Fault is a translithospheric structure (Hu et al., 1988). Secondary structures affiliated with the Machaoying Fault are well developed and have been important in the formation and distribution of polymetallic deposits in the area (Fig. 1; Chen and Fu, 1992; Yan et al., 2000; Ma et al., 2006).

Mesozoic granitoid intrusions are widespread in the southern NCC (Fig. 1). To the west of the Waifangshan district, the Wuzhangshan and Huashan plutons intruded intermediate to acidic rocks of the Xiong’er Group at 157 ± 1 Ma and 132 ± 2 Ma, respectively (Mao et al., 2010). To the south of the district, the Heyu pluton consists of biotite monzonite and granite porphyry formed by multiphase magmatism between 148 and 127 Ma (Gao et al., 2010b; Mao et al., 2010; Li et al., 2012c, 2013a). Adjacent to the Heyu intrusive complex, the Taishanmiao pluton consists of coarse- to medium-grained K-feldspar granite, fine- to medium-grained syenogranite, and fine-grained granite (Qi, 2014), which were emplaced episodically between 125 and 115 Ma (Ye et al., 2008; Qi, 2014; Gao et al., 2014). Compositioally, the Taishanmiao granites are classified as K-rich, aluminous to peraluminous granite and aluminous A-type granite (Ye et al., 2008). A number of Mo-mineralized porphyries occur over the Waifangshan district and adjacent areas (Fig. 1). These porphyries have been dated at 158 to 112 Ma using in-situ zircon U-Pb geochronology (Li et al., 2006; Mao et al., 2010).

Geology of the Fudian ore field

The Fudian ore field is located in the eastern portion of the Waifangshan district (Fig. 1), immediately to the northeast of the Taishanmiao intrusive complex (Fig. 2). The ore field is dominated by basaltic andesite, andesite, dacite and rhyolites of the Paleoproterozoic Xiong’er Group, which are locally covered by Cenozoic unconsolidated sediments (Fig. 2). Brittle faults are well developed in the
The NW-striking Yangping-Wangping Fault (F1) and Jincun-Fudian Fault (F2) are the main structures in the district, extending for more than 20 to 30 km along strike and dipping 70°-80° to the southwest (Huang et al., 1992). Both faults are characterized by well-developed tectonic breccias and cataclasite with intensive sericitization, chloritization, and silicification. Numerous NE-striking faults displace and thus postdate the NW-striking structures (Fig. 2). There are also some minor E-striking faults, which either crosscut or are displaced by the NE- or NW-oriented faults. The E- and NE-striking faults are the major structural hosts of the Pb-Zn-Ag veins in the Fudian ore field (Fig. 2; Huang et al., 1992; Ma et al., 2006).

Several granitoid intrusions were emplaced into the volcanic rocks of the Xiong’er Group (Fig. 2). They are compositionally dominated by quartz diorite and quartz monzonite, with minor diorites (Fig. 2). The quartz monzonite at Wangpingxigou is enclosed by, rather than intrudes, volcanic rocks of the Xiong’er Group. It intruded the Taihua Group and then covered by the Xiong’er Group. Ages of these magmatic intrusions are undetermined, but a Mesoproterozoic age is speculated by local geologists (HBGMR, 1989). The Donggou granite porphyry is the only Mesozoic intrusion at Fudian, but large plutonic bodies of similar ages crop out to the south of the ore field (Figs. 1, 2). The Donggou porphyry has an exposure of 0.01 km² (Fig. 3), but drill holes have revealed that it has a minimum lateral dimension of 1550 m and a vertical extent of >850 m (Fig. 4; Ye et al., 2006). The porphyry has phenocrysts dominated by perthite and quartz that account for 10-15 vol. % of the rocks, whereas the matrix is composed principally of perthite (40-55 vol. %), quartz (20-30 vol. %), plagioclase (10-20 vol. %), and albite (5-15 vol. %) with minor biotite. The rocks are weakly peraluminous with high Si, K, and Ga/Al ratios, and are classified as aluminous A-type granites (Dai et al., 2009). Whole-rock Sr-Nd and zircon Hf isotope data indicate that the porphyry was derived from partial melting of ancient lower crust with minor input of mantle-derived mafic magmas (Dai et al., 2009). Regional gravity and aeromagnetic data indicate a deep-seated plutonic body beneath the Donggou porphyry, likely representing the northward extension of the Taishanniao intrusion at depth (Ye et al., 2006).

Mineralization

Mineralization in the Fudian ore field is largely represented by the Donggou porphyry Mo deposit and several Pb-Zn-Ag vein deposits (Fig. 2). The Donggou Mo deposit was discovered in 1984 by the
No. 2 Team of Henan Bureau of Geology and Mineral Resources during a regional geological survey, and has proven reserves of 0.63 Mt Mo at an average grade of 0.11 wt % (Ye et al., 2006). Spatially associated with the Donggou deposit are several Pb-Zn-Ag vein deposits hosted by E- or NE-striking faults, as best illustrated by the Sanyuangou, Wangpingxigou, and Laodaizhanggou deposits (Fig. 2). The combined reserves of these deposits is 0.93 Mt Pb + Zn (Ye, 2006; Yao et al., 2008), whereas the quantity of the Ag reserve is not published.

Donggou porphyry Mo deposit

The Donggou porphyry Mo deposit (112°22′50″ E, 33°57′03″ N) is related to the Donggou porphyry, which intruded andesite and basaltic andesite of the Xiong’er Group. Unlike typical porphyry Cu-Mo deposits where the ores are commonly localized in porphyritic intrusions, Mo mineralization at Donggou is mostly hosted in the andesite of the Xiong’er Group up to 360 m from the intrusive contact of the Donggou porphyry (Figs. 4, 5a, 5c). The ores in the volcanic rocks account for ca. 98 % of the total reserves of the deposit (Ma et al., 2007). Minor Mo mineralization occur in the uppermost zone (<70 m) of the Donggou porphyry (Figs. 4, 5b, 6a). The deposit consists of 19 orebodies, individually 47 to 254 m thick. Molybdenum mineralization in the Paleoproterozoic volcanic rocks is largely controlled by abundant fractures in the rocks that provided high permeability for magmatic-derived, Mo-bearing hydrothermal fluids (Yang et al., 2011, 2015).

Molybdenum mineralization is dominated by stockwork veinlets and veins bearing molybdenite, with minor amounts of sulfide disseminations (pyrite, chalcopyrite, sphalerite, and galena; Figs. 5, 6b-c) both within the Donggou porphyry and the proximal Paleoproterozoic volcanic rocks. They are largely represented by fine-grained molybdenite disseminations (Fig. 5a), coarse-grained molybdenite aggregates (Fig. 5b), and K-feldspar – molybdenite veins (Fig. 5c-d) that are commonly overprinted by quartz – molybdenite veins (Fig. 5d). Polymetallic sulfide veins occur locally in the proximal volcanic rocks. These veins are typically 10 to 50 cm wide and cut hydrothermally altered and Mo-mineralized andesite (Fig. 5e-f). Pyrite, sphalerite, and galena are abundant in these veins, with minor molybdenite and chalcopyrite (Figs. 5e-f, 6d-f).

Hydrothermal alteration is well developed both in the Donggou porphyry and the proximal andesite. The dominated alteration types are potassic (Fig. 5b-d) and silicic alteration (Fig. 5d-f).
Potassic alteration is largely represented by K-feldspar, locally associated with minor biotite, and typically occurs as mm-to-cm-scale aggregates of K-feldspar (Figs. 5a-d). Silicic alteration occurs mainly in the wall rocks surrounding the porphyry, shown by quartz with various amounts of sulfide minerals (Figs. 5d-f). Molybdenite is present both in the potassic and silicic assemblages, occurring mainly as aggregates (Fig. 5b-d). Less extensive alteration formed sericite, chlorite, and carbonate aggregates or irregular veinlets. Based on field and petrographic observations, four paragenetic stages are recognized at Donggou (Fig. 7): stage D1 (D is short for Donggou) K-feldspar – molybdenite veins; stage D2 quartz – molybdenite veins; stage D3 quartz – polymetallic sulfide veins; and stage D4 quartz – calcite veins. Molybdenite mainly occurs during stages D1 and D2.

Sanyuangou Pb-Zn-Ag deposit

In the whole Fudian ore field, Pb-Zn-Ag vein deposits share common geological and mineralization features. To understand their temporal and spatial relationships with the Donggou porphyry, here we focus on the Sanyuangou Pb-Zn-Ag vein deposit. The Sanyuangou deposit (112°22′19″ E, 33°55′55″ N) is located on the southern edge of the Fudian ore field, about 3 km to the south of the Donggou porphyry Mo deposit (Fig. 2). Mineralization is hosted in a quartz diorite stock elongated easterly that has been cut by numerous NW-, NE-, and E-oriented faults (Fig. 2). The Pb-Zn-Ag mineralization is largely represented by Pb-Zn-sulfide veins, which mainly occur in E-striking faults (Figs. 2, 8a-b). These vein-hosting faults commonly dip 70°-85° to the north, but locally steeply dip to the south. Individual veins are usually 300 to 2,000 m long, 0.5 to 5 m wide, and continuous for several hundred meters down plunge. Quartz – pyrite veins are typically crosscut by Pb-Zn-sulfide veins (e.g., Fig. 8a). Individual Pb-Zn-ore shoots are separated by less mineralized, subeconomic segments along the veins (Fig. 8a-d). Massive sulfide ores (Fig. 8c-e) are common, and preferentially localized in dilational jogs, splays, and bifurcations along the structures. Sulfide minerals in the Pb-Zn-Ag veins are dominated by pyrite, sphalerite, and galena, with minor amounts of chalcopyrite, pyrrhotite, bornite, tetrahedrite, and covellite (Figs. 8a-e, 9a-d). Galena is the main silver-bearing mineral, but minor polybasite and argentite are also present.

Hydrothermal alteration is well developed and ranges from cm-wide selvages to meter-wide halos (e.g., Fig. 8a). The alteration assemblages consist mainly of quartz, sericite, siderite, ankerite, and...
calcite, with minor chlorite (Figs. 8a, f, 9e-f). Field and textural relationships indicate three paragenetic stages (Fig. 10): stage S1 (S is short for Sanyangou) quartz – pyrite veins; stage S2 quartz – polymetallic sulfide veins; and stage S3 quartz – calcite veins. Pb-Zn-Ag mineralization is mainly associated with stage S2.

Samples and Analytical Methods

Geochronology

Zircon U-Pb dating

The Donggou granite porphyry (DG01) hosting the Donggou porphyry Mo deposit and the quartz diorite (SY01) and quartz monzonite (WP01) hosting the Sanyangou and Wangpingxigou Pb-Zn-Ag vein deposits, respectively, were collected for zircon U-Pb geochronology (Figs. 2, 3). U-Pb dating of quartz diorite and quartz monzonite was aimed to test previous speculations that these host rocks are temporarily and genetically related to the Pb-Zn-Ag mineralization. Zircon grains were handpicked under a binocular microscope after conventional crushing, liquid and magnetic separation. Representative grains were mounted in epoxy resin disks, and then polished, cleaned, and gold coated. Prior to isotopic analysis, all grains were photographed under transmitted- and reflected-light microscope and then imaged using the cathodoluminescence (CL) technique with a JEOL 8800 electron microprobe.

Zircon U-Pb dating was conducted using laser ablation inductively coupled plasma mass spectroscopy (LA-ICP-MS) at the State Key Laboratory of Geological Processes and Mineral Resources (GPMR), China University of Geosciences, Wuhan. Laser analysis was performed with a GeoLas 2005. An Agilent 7500a ICP-MS instrument was used to acquire ion-signal intensities. Helium was applied as a carrier gas. Argon was used as the make-up gas and mixed with the carrier gas via a T-connector before entering the ICP. Nitrogen was added into the central gas flow (Ar + He) of the Ar plasma to decrease the detection limit and improve precision (Hu et al., 2008). Each analysis incorporated a background acquisition of approximately 20 to 30 s (gas blank) followed by 50 s data acquisition from the sample. The Agilent Chemstation was utilized for the acquisition of each individual analysis. Off-line selection and integration of background and analyte signals, and time-drift correction and quantitative calibration for trace element analyses and U-Pb dating were performed by
ICPMSDataCal (Liu et al., 2008, 2010). Zircon 91500 was used as the external standard for U-Pb
dating, and was analyzed twice every five sample analyses. Time-dependent drifts of U-Th-Pb isotopic
ratios were corrected using a linear interpolation (with time) for every five analyses according to the
variations of 91500 (Liu et al., 2010). Uncertainty of preferred values for the external standard 91500
was propagated to the ultimate results of the samples. Concordia diagrams and weighted mean
calculations were made using Isoplot/Ex_ver3 (Ludwig, 2003).

Molybdenite Re-Os dating

Molybdenite samples representative of stage D2 quartz – molybdenite vein (DG03; Fig. 5d) and
stage D3 quartz – polymetallic sulfide vein (FDG08; Fig. 5f) of the Donggou porphyry Mo deposit
were collected to establish the timing of molybdenite mineralization using the Re-Os chronometer. The
Carius tube method was used for dissolution of molybdenite and equilibration of the sample with tracer
Re and Os (Selby and Creaser, 2001). Approximately 22-23 mg of molybdenite were dissolved and
equilibrated with a known amount of 185Re and isotopically normal Os at 240 °C for 24 h. Solvent
extraction and microdistillation was used to separate Os, whereas anion exchange chromatography was
used to separate Re (Selby and Creaser, 2001). The concentrations of 187Re and 187Os were determined
at the Laboratory for Sulfide and Source Rock Geochronology and Geochemistry (a member of the
Durham Geochemistry Centre), Durham University, using isotope dilution negative thermal ionization
mass spectrometry (ID-NTIMS). Isolated and purified Re and Os solutions were loaded onto Ni and Pt
filaments, respectively, and analyzed using a Thermo Scientific TRITON mass-spectrometer with
Faraday collectors. Re-Os model ages were calculated by the equation, $\ln \left(\frac{^{187}\text{Os}}{^{187}\text{Re} + 1} \right)/\lambda$, where λ
denotes the decay constant for 187Re. The 187Re decay constant used is 1.666×10^{-11} year$^{-1}$, with an
uncertainty of 0.31% (Smoliar et al., 1996; Selby et al., 2007). Uncertainties in the age calculations
include uncertainties associated with (1) 185Re and 190Os spike calibrations, (2) weighing the spikes, (3)
magnification with spiking, (4) mass spectrometric measurement of isotopic ratios, (5) blanks (Re = 2.4
pg, Os = 0.1 pg, 187Os/188Os = ~0.25), and (6) the 187Re decay constant.

Sericite 40Ar/39Ar dating

Sample SY02 was taken from sericitic alteration assemblages associated with a stage S2 Pb-Zn-
sulfide vein of Sanyuangou. The sample is dominated by sericite that is intergrown with sphalerite and
pyrite (Fig. 9f). After petrographic examination, suitable parts of the sample were crushed, repeatedly
sieved to obtain mineral grains as uniform as possible in size (0.5-2 mm), washed in distilled water in
an ultrasonic bath for 1 h, and dried. Sericite aggregates of 0.5 to 1.0 mm were screened under a binocular microscope.

Sericite mineral separates were irradiated along with the ZBH-25 biotite standard (132.7 ± 1.2 Ma at 1σ; Wang, 1983) for 55 h in the Swimming Pool Reactor, Chinese Institute of Atomic Energy (Beijing). After a three month cooling period, the samples were analyzed by the $^{40}\text{Ar}/^{39}\text{Ar}$ stepwise incremental heating method using a MM-1200B mass spectrometer at Institute of Geology, Chinese Academy of Geological Sciences. The analytical procedures are detailed in Chen et al. (2002) and summarized here. The Ar extraction system comprises an electron bombardment heated furnace in which the samples were heated under vacuum. The released gases were admitted to a purification system, with 30 min for heating-extraction for each temperature increment and 30 min for purification. Purified Ar was trapped in activated charcoal finger at liquid-nitrogen temperature and then released into the mass spectrometer for isotope analysis. Measured isotopic ratios were corrected for mass discrimination, atmospheric Ar component, blanks, and irradiation-induced mass interference. The correction factors of interfering isotopes produced during irradiation were determined by analysis of irradiated K$_2$SO$_4$ and CaF$_4$ pure salts, and their values are $^{36}\text{Ar}/^{37}\text{Ar})_{Ca} = 0.000240$, $^{40}\text{Ar}/^{39}\text{Ar})_{K} = 0.004782$, and $^{39}\text{Ar}/^{37}\text{Ar})_{Ca} = 0.000806$ (Chen et al., 2002). All dates are reported using $5.543 \times 10^{-10} \text{a}$ as the total decay constant for ^{40}K (Steiger and Jäger, 1977). The age uncertainties are reported at the 95% confidence level (2σ), and include the uncertainties in irradiation correction factors and the J value, but do not include the uncertainty in the potassium decay constant. The Ar-Ar data were calculated and plotted using Isoplot/Ex_ver3 (Ludwig, 2003).

LA-ICP-MS analyses of pyrite

Two ore samples (FDG09 and FDG11) from stage D3 Pb-Zn-sulfide vein of the Donggou porphyry Mo deposit and two samples (SY03 and SY04) from stage S2 Pb-Zn-sulfide vein of the Sanyangou Pb-Zn-Ag deposit were selected for pyrite trace element analysis. The analysis was conducted at the Centre of Excellence in Ore Deposits (CODES), University of Tasmania, Australia. Analytical instrumentation consists of a New Wave 213-nm solid-state laser microprobe and an Agilent 7500 Quadrupole ICP-MS. The operating conditions and procedures applied to pyrite have been detailed in Large et al. (2007) and Danyushevsky et al. (2011).
Spot analyses of pyrite were performed by laser-ablating spots of 35 μm diameter. The repetition rate was 5 Hz, and laser beam energy was maintained between 4 and 5 Jcm⁻². Analysis time was restricted to 90 s, consisting of 30-s background (laser off) and 60-s analysis (laser on). The primary calibration standard (STDGL2b2) consists of a fused glass containing 25% Zn concentrate and 75% pyrrhotite developed in-house (Danyushevsky et al., 2011). It was analyzed twice every 1.5 hours with a 100-μm beam size at 5 Hz to correct for instrument drift. Data were reduced using SILLS software following standard methods (Longerich et al., 1996). Iron was used as the internal standard, and the Fe contents were determined by EMP analyses at the State Key Laboratory of GPMR, China University of Geosciences, Wuhan.

In-situ lead isotope analyses

Three ore samples (FDG09, FDG10, and FDG11) from stage D3 quartz – polymetallic sulfide veins at Donggou and three samples (SY04, SY05, and SY06) from stage S2 Pb-Zn-sulfide veins at Sanyangou were selected for lead isotopic analyses to provide additional constraints on a possible genetic link between these two deposits. *In-situ* lead isotope analyses on pyrite were performed on a Neptune Plus MC-ICP-MS (Thermo Fisher Scientific, Dreieich, Germany) equipped with a Geolas 2005 excimer ArF laser ablation system (Lambda Physik, Göttingen, Germany) at the State Key Laboratory of GPMR, China University of Geosciences, Wuhan. In the laser ablation system, helium was used as the carrier gas for the ablation cell and was mixed with argon (make-up gas) after the ablation cell. The spot diameter ranged from 44 to 90 μm dependent on Pb signal intensity. The pulse frequency was from 4 to 10 Hz, but the laser fluence was kept constant at ~3 J/cm². A new signal-smoothing and mercury-removing device was used downstream from the sample cell to efficiently eliminate the short term variation of the signal and remove the mercury from the background and sample aerosol particles (Hu et al., 2014). The Neptune Plus was equipped with nine Faraday cups fitted with 10¹¹ Ω resistors. Isotopes ²⁰⁸Pb, ²⁰⁷Pb, ²⁰⁶Pb, ²⁰⁴Pb, ²⁰⁵Tl, ²⁰₃Tl and ²⁰²Hg were collected in faraday cups within static mode. The mass discrimination factor for Pb was determined using a Tl solution (NIST SRM 997) nebulized at the same time as the sample, using an Aridus II desolvating nebulizer. The ²⁰₃Hg signal was used to correct the remained ²⁰⁴Hg interference on ²⁰⁴Pb, using the natural ²⁰²Hg/²⁰₄Hg ratio.
In this method, the natural Tl-isotopic composition was assumed. MASS-1, a sulfide standard reference from USGS (Wilson et al., 2002), and two in-house standards PY-3 and Sph-2 were then run to define the mathematical relationship between Tl and Pb mass bias (Woodhead, 2002). The Pb isotopic compositions of those three sulfides samples were previously determined by solution MC-ICPMS at GPMR. MASS-1 was used to monitor the precision and accuracy of the measurements after ten sample analysis, over the entire period of analysis. The obtained accuracy is estimated to be equal to or better than ± 0.6 ‰ for $^{208}\text{Pb}/^{204}\text{Pb}$, $^{207}\text{Pb}/^{204}\text{Pb}$, and $^{206}\text{Pb}/^{204}\text{Pb}$ compared to the solution value by MC-ICP-MS, with a typical precision of 0.4 ‰ (2σ).

Results

Geochronological data

Zircon U-Pb ages

The U-Pb isotope data are tabulated in Appendix 1 and illustrated in concordia diagrams (Fig. 11). Zircon grains from the Donggou granite porphyry are euhedral to subhedral, 30-200 µm long, with aspect ratios of 1 to 2.5. Most zircon grains show oscillatory zoning in CL images (Fig. 11a), consistent with a magmatic origin. These zircons have high Th (177-1911 ppm) and U (279-3722 ppm), with Th/U ratios ranging from 0.43 to 1.71, which is typical of magmatic zircons (Claesson et al., 2000). A total of thirteen spot analyses were made on twelve zircon grains for sample DG01. Eleven spots are concordant, with the remaining two being slightly discordant (Fig. 11a). However, the discordant data have $^{206}\text{Pb}/^{238}\text{Pb}$ ages indistinguishable from the concordant ones (Appendix 1), indicating that the discordance may reflect uncertainties related to ^{207}Pb measurement or common Pb correction, rather than lead loss. All thirteen analyses have a weighted mean $^{206}\text{Pb}/^{238}\text{U}$ age of 117.8 ± 0.9 Ma (1σ, MSWD = 0.1; Fig. 11a).

Zircon grains from the Sanyuangou quartz diorite are euhedral to subhedral, 50-200 µm long, with aspect ratios of 1 to 2. In CL images, most zircon grains show oscillatory zoning (Fig. 11b). These grains have relatively high Th (358-2,403 ppm) and U (393-1,350 ppm), with Th/U ratios of 0.69 to 1.79 (Appendix 1). Fourteen spot analyses were made on 14 zircon grains for sample SY01. The spots are concordant and yield a weighted mean $^{207}\text{Pb}/^{206}\text{Pb}$ age of 1,756 ± 9 Ma (1σ, MSWD = 1.1; Fig. 11b).
Zircon grains from the Wangpingxigou quartz monzonite are euhedral and display well-developed prismatic and pyramidal faces. They are commonly 100-300 µm long with length/width ratios of 1 to 3. Most zircon grains show spectacular oscillatory zoning in CL images (Fig. 11c). These grains contain 167-993 ppm Th and 214-885 ppm U, with Th/U ratios of 0.65 to 1.48 (Appendix 1). Fifteen spot analyses on 14 zircon grains from sample WP01 yield concordant ages with a weighted mean $^{207}\text{Pb}/^{206}\text{Pb}$ age of 1,837 ± 11 Ma (1σ, MSWD = 1.1; Fig. 11c).

Molybdenite Re-Os ages

Re-Os isotope data are presented in Table 1. All age uncertainties are quoted at the 2σ level. Sample from the quartz – molybdenite vein (DG03) contains 2.6 ppm Re and 3.2 ppb ^{187}Os, and has a Re-Os model age of 117.5 ± 0.8 [0.9] Ma (bracketed value refers to errors including the decay constant uncertainty). Sample from the quartz – polymetallic sulfide vein (FDG08) contains 7.1 ppm Re and 8.6 ppb ^{187}Os, and has a Re-Os model age of 116.4 ± 0.6 [0.7] Ma. The age difference between sample DG03 and FDG08 is consistent with field relationship and paragenetic sequence between the stage D2 quartz – molybdenite vein and stage D3 quartz – polymetallic sulfide vein.

Sericite $^{40}\text{Ar}/^{39}\text{Ar}$ age

The $^{40}\text{Ar}/^{39}\text{Ar}$ results of sample SY02 are summarized in Table 2 and the age spectrum and inverse isochron are shown in Figure 12. All $^{40}\text{Ar}/^{39}\text{Ar}$ ages are calculated using the decay constants of Steiger and Jäger (1977) and the uncertainties are reported at the 95% confidence level (2σ). The sample yields a well-defined plateau age of 115.9 ± 0.9 Ma (MSWD = 0.7), consisting of seven contiguous steps that account for 92.7% of the total ^{39}Ar released (Fig. 12a). Isotopic results of these steps formed a well-defined inverse isochron in the $^{39}\text{Ar}/^{40}\text{Ar}$ versus $^{36}\text{Ar}/^{40}\text{Ar}$ diagram (Fig. 12b), with an inverse isochron age of 116.0 ± 1.2 Ma (MSWD = 10.9) that is indistinguishable from the plateau age. The inverse isochron plot has a $^{40}\text{Ar}/^{36}\text{Ar}$ ratio of 299.0 ± 6.0, which is within uncertainty of the accepted value of the present air (298.5 ± 0.3; Renne et al., 2009) and thus suggests that no excessive argon was incorporated into the mineral.

Trace element compositions of pyrite

A total of 50 LA-ICP-MS spot analyses were made on pyrite grains from the Donggou porphyry Mo and Sanyuangou Pb-Zn-Ag vein deposits. The trace element analyzed include Cr, Mn, Fe, Co, Ni,
Cu, Zn, Ga, As, Se, Mo, Ag, Cd, Sn, Sb, Te, Ba, Gd, Hf, Ta, W, Pt, Au, Ti, Pb and Bi. The full analytical results are listed in Appendix 2, and the compositions of selected trace elements are illustrated in Figure 13. Pyrite from the Donggou porphyry Mo deposit is depleted in most trace elements, but contains higher Mo (up to 154 ppm) and Bi (29 ppm) compared to pyrite from the Sanyuangou Pb-Zn-Ag vein deposit. Pyrite from Donggou also contains considerable Sn (0.10 to 6 ppm), Te (0.07 to 9.7 ppm), Pb (0.07 to 398 ppm), As (1.76 to 1821 ppm), and Sb (0.01 to 31 ppm). In contrast, pyrite from Sanyuangou has elevated Cu (2.7 to 23,420 ppm), Zn (0.25 to 26,893 ppm), Pb (0.02 to 637 ppm), Ag (up to 1091 ppm), Au (up to 21 ppm), and As (0.3 to 17913 ppm). Pyrites from Donggou and Sanyuangou have similar Co (0.1-1224 vs. 0.5-1290 ppm) and Ni (0.1-116 vs. 0.3-300 ppm) contents and Co/Ni ratios (0.7-48 vs. 0.4-82; Fig. 14).

Pyrite lead isotopic compositions

The in-situ lead isotope analyses of pyrite are listed in Table 3. Ten pyrite grains from Donggou have 206Pb/204Pb ratios of 17.328 to 17.517, 207Pb/204Pb of 15.408 to 15.551, and 208Pb/204Pb of 38.080 to 38.436. Pyrite grains from Sanyuangou have Pb isotopic compositions that are very similar to that of Donggou (206Pb/204Pb = 17.273 to 17.495; 207Pb/204Pb = 15.431 to 15.566; 208Pb/204Pb = 37.991 to 38.337; n = 10).

Discussion

Timing of mineralization

Donggou porphyry Mo deposit

Zircon grains from the Donggou granite porphyry show morphological and compositional features typical of magmatic zircons (Claesson et al., 2000; Wu and Zheng, 2004; Appendix 1). The precise LA-ICP-MS zircon U-Pb age (117.8 ± 0.9 Ma) presented here provides a tight constraint on the emplacement age of the Donggou porphyry. This age is consistent, within analytical uncertainty, with a previous LA-ICP-MS zircon U-Pb age (117 ± 1 Ma) for the Donggou porphyry (Dai et al., 2009). The younger zircon U-Pb ages (112 ± 1 Ma by SHRIMP, Ye et al., 2006; 114 ± 1 Ma by LA-ICP-MS, Dai et al., 2009) either reflect multistage magmatism at Donggou or different analytical protocols used by those authors. However, our field observations and drill core logging did not identify evidence for
multiple intrusions, nor did the authors who obtained the younger U-Pb ages presented evidence that
their samples were from intrusions other than Donggou porphyry. Thus it is suggested that the different
ages have more likely resulted from different analytical methods or from the analysis of zircon grains
that have experienced Pb loss.

The molybdenite Re-Os chronometer is remarkably robust due to the high closure temperature of
Re-Os isotopes in molybdenite (Suzuki et al., 1996; Stein et al., 2001; Selby et al., 2002; Chiaradia et
al., 2013). Thus, Re-Os dating of this mineral commonly provides reliable constraints on the timing of
ore formation (Selby et al., 2002). Molybdenite from the stages D2 and D3 veins of the Donggou Mo
deposit have overlapping Re-Os model ages of 117.5 ± 0.8 Ma and 116.4 ± 0.6 Ma (Table 1). The
molybdenite Re-Os ages are in excellent agreement with zircon U-Pb age of the Mo mineralized
porphyry, providing strong evidence for temporal and genetic relationship between magmatism and Mo
mineralization. The absolute value of molybdenite Re-Os age of the stage D3 quartz – polymetallic
sulfide vein (116.4 ± 0.6 Ma) is slightly younger than that of the stage D2 quartz – molybdenite vein
(117.5 ± 0.8 Ma) and zircon U-Pb age (117.0 ± 1 Ma) of the Donggou porphyry, but they are all
indistinguishable if the analytical uncertainties are considered. Based on these results, we propose that
the Donggou porphyry Mo deposit formed between 117.5 ± 0.8 Ma and 116.4 ± 0.6 Ma during the
Early Cretaceous, genetically associated with the Donggou porphyry.

Sanyuangou Pb-Zn-Ag vein deposit

Field and petrographic relations (Fig. 9f) indicate that sericite is spatially and texturally associated
with stage S2 Pb-Zn sulfide veins at Sanyuangou, and thus ⁴₀Ar/³⁹Ar dating of sericite can provide
constraints on the timing of hydrothermal alteration and mineralization (Li et al., 2003; Chiaradia et al.,
2013). One sericite sample has a ⁴₀Ar/³⁹Ar plateau age of 115.9 ± 0.9 Ma and an identical inverse
isochron age of 116.0 ± 1.2 Ma (Fig. 12), which represent the time when sericite cooled below the
closure temperature of argon isotopes in mica. Formation of Pb-Zn-Ag veins at Sanyuangou has been
constrained at 206°-265°C based on the sulfur isotopic equilibration equations of pyrite-galena and
sphalerite-galena pairs from stage S2 veins (Li, 2013). This temperature range is lower than the argon
closure temperature in mica (300°-350°C; McDougall and Harrison, 1999), the present ⁴₀Ar/³⁹Ar age
can therefore be reliably interpreted as the timing of hydrothermal alteration and Pb-Zn-Ag
mineralization of the Sanyuangou deposit. Ye et al. (2006) reported a sericite ⁴₀Ar/³⁹Ar “plateau” age
of 110.1 ± 9.2 Ma (24.2 % of the total ³⁹Ar released) for Sanyuangou, which overlaps with our new
A porphyry-related Mo-Pb-Zn-Ag metallogenic system

The Sanyuangou Pb-Zn-Ag vein deposit is located about 3 km south of the Donggou porphyry Mo deposit (Fig. 2). Sericite 40Ar/39Ar dating of the alteration assemblages proximal to a Stage S2 Pb-Zn-sulfide vein (115.9 ± 0.9 Ma) at Sanyuangou and Re-Os dating of molybdenite from Stage D2 quartz – molybdenite vein (117.5 ± 0.8 Ma) and Stage D3 quartz – polymetallic sulfide vein (116.4 ± 0.6 Ma) at Donggou suggest that Pb-Zn-Ag mineralization at Sanyuangou was mutually consistent. Therefore, the close spatial-temporal relations between the Sanyuangou Pb-Zn-Ag and Donggou porphyry Mo deposits propose a genetic association.

Pyrite is an important scavenger of a variety of trace elements as Au, Ag, Cu, Pb, Zn, Co, Ni, As, Sb, Se, Te, Hg, Tl, and Bi (Cook and Chryssoulis, 1990; Craig et al., 1998; Large et al., 2007; Reich et al., 2013) and thereby can provide useful information on the composition and evolution of ore fluids (Hawley and Nichol, 1961; Bralia et al., 1979; Craig et al., 1998; Morey et al., 2008; Large et al., 2007, 2009, 2011). Knowledge on the trace-element geochemistry of pyrite not only contributes to a better understanding in the physicochemical parameters of ore fluids from which pyrite precipitated and thus a more geologically reasonable metallogenic model for the pyrite-dominated deposits, but also improves exploration strategies of these deposits (Heinrich et al., 2003; Danyushevsky et al., 2011).
Laser ablation ICP-MS spot analyses show that pyrite from Donggou is enriched in Mo and Bi (Fig. 13). In contrast, pyrite from Sanyuangou is depleted in Mo and Bi, but enriched in Cu, Zn, Pb, Ag, Au, and As (Fig. 13). The trace element patterns of pyrite from these two deposits are consistent with metal zonation typically observed in a porphyry-related hydrothermal system, commonly illustrated by Cu, Mo → Zn, Pb → Ag, Au, As from porphyry ores to distal base-metal veins (Emmons, 1927; Jones, 1992; Seedorff et al., 2005; Sillitoe, 2010). On the other hand, pyrite from Sanyuangou has contents of Sn, Sb, Co, and Ni similar to those from Donggou, with comparable Co/Ni ratios mostly higher than 1 (Figs. 13, 14). This observation also is supportive for a magmatic-hydrothermal origin for the Sanyuangou Pb-Zn-Ag deposit (Bralia et al., 1979; Deol et al., 2012).

Pyrite may contain moderate to high quantities of Pb, but virtually lacks U, and therefore its Pb isotopic compositions provide valuable information on the sources of lead and associated metals (Meffre et al., 2008; Woodhead et al., 2009; Darling et al., 2012; Steadman et al., 2013). In-situ pyrite isotopic compositions of Donggou and Sanyuangou are used to uncover a possible genetic link between these two deposits. Pyrite from Sanyuangou has Pb isotopic compositions (\(^{206}\text{Pb}/^{204}\text{Pb} = 17.273-17.495, \(^{207}\text{Pb}/^{204}\text{Pb} = 15.431-15.566,\) and \(^{208}\text{Pb}/^{204}\text{Pb} = 37.991-38.337\)) that are similar to values of pyrite from Donggou \((^{206}\text{Pb}/^{204}\text{Pb} = 17.328-17.517, ^{207}\text{Pb}/^{204}\text{Pb} = 15.408-15.551,\) and \(^{208}\text{Pb}/^{204}\text{Pb} = 38.080-38.436\)).

Thorogenic (Fig. 15a) and uranogenic (Fig. 15b) Pb isotopic diagrams show that the pyrite samples from the two deposits plot in the same area and display similar trends, indicating a common source of the lead. Collectively, field, paragenetic, geochronological, geochemical, and isotopic data indicate that the Pb-Zn-Ag mineralization at Sanyuangou is genetically related to the Donggou porphyry Mo system, and can be best interpreted as a distal product of the Donggou magmatic-hydrothermal system.

There are additional Pb-Zn-Ag vein deposits surrounding the Donggou porphyry Mo deposit (e.g., Wangpingxigou, Laodaizhanggou; Fig. 2). These deposits have geological and mineralization characteristics consistent with the Sanyuangou deposit (Huang et al., 1992; Ye, 2006; Yao et al., 2008). The Wangpingxigou deposit has a sphalerite Rb-Sr isochron age of 117 ± 27 Ma (Yao et al., 2010). This age, although having a large analytical uncertainty, indicates that Wangpingxigou formed in Early Cretaceous, broadly synchronous with the Pb-Zn-Ag veins at Sanyuangou. However, ore-related sericite from the Laodaizhanggou Pb-Zn-Ag vein deposit yields a well-defined \(^{40}\text{Ar}/^{39}\text{Ar}\) plateau age of 124.7 ± 1.2 Ma (Li, 2013), which is about 7 m. y. older than Sanyuangou (115.9 ± 0.9 Ma; Fig. 12a) and Donggou (117.5 ± 0.8 Ma to 116.4 ± 0.6 Ma; Table 1). As such, the age indicate that district-wide
Pb-Zn-Ag mineralization may have formed in association with multiple magmatic-hydrothermal activities.

Early Cretaceous magmatic activity is well-recognized at Waifangshan and surrounding districts. The Taishanniao pluton, with an exposure of ca. 290 km² in southwest of the Fudian ore field (Figs. 1, 2), formed by episodic magmatism from 125 to 115 Ma as revealed by zircon U-Pb dating (Ye et al., 2008; Qi, 2014; Gao et al., 2014). In the east of Taishanniao, the Zhuyuangou quartz-molybdenite veins (0.1 Mt Mo; Huang et al., 2010) are hosted in fine-grained granite and have molybdenite Re-Os ages of 122.2 ± 2.3 and 119.6 ± 2.2 Ma (Huang et al., 2010). Taken together, we suggest that the Pb-Zn-Ag vein deposits in the Fudian ore field could have been products of multiple magmatic-hydrothermal events in the Early Cretaceous, with some (e.g., Sanyuangou and Wangpingxigou) being related to the Donggou mineralized porphyry, but others (e.g., Laodaizhanggou) likely having an association with earlier magmatism as represented by the Taishanniao intrusive complex and Zhuyuangou quartz-molybdenite veins (Huang et al., 2010).

Implications for mineral exploration

Our study has shown that the Pb-Zn-Ag veins in the Fudian ore field are most likely distal products of porphyry-related magmatic-hydrothermal systems. This view has significant implications for Mo and Pb-Zn-Ag mineral exploration in the area, as these two mineralization styles can be used as a vector for each other (Sillitoe, 2010). The Pb-Zn-Ag veins commonly occur in shallow and distal parts of a porphyry system. The fault zones surrounding known porphyry Mo deposits are favorable sites for localizing Pb-Zn-Ag veins (Seedorff et al., 2005; Sillitoe, 2010). Brittle faults with different strikes are well developed in the Fudian ore field (Fig. 2), some of which are marked by variable degrees of hydrothermal alteration. Such structures are good targets for Pb-Zn-Ag veins. Other districts along the southern NCC also host giant porphyry and porphyry-skarn Mo deposits that formed during the Late Jurassic to Early Cretaceous (Fig. 1), including Jinduicheng (Huang et al., 1994), Nannihu (Li et al., 2003), Leimengou (Li et al., 2006), and Yuchiling (Li et al., 2012d, 2013a). Our model in the Fudian ore field has broad implications for exploration of Pb-Zn-Ag deposits in those districts, where fractures zones, particularly those with extensive hydrothermal alteration, should be good targets for Pb-Zn-Ag resources.
The Pb-Zn-Ag veins are widespread in large areas of the southern NCC (Fig. 1). Although some veins show close spatial and temporal relationships with porphyry Mo deposits (Fig. 1), such a relationship, however, is lacking for other vein deposits. This contrast may reflect the variable degree of erosion of each district and/or the difference in emplacement depth of individual Mo mineralized porphyry systems. We predict that unexposed porphyry Mo deposits may occur beneath and/or to the side of some Pb-Zn-Ag veins where magmatic intrusions are lacking at surface. The Pb-Zn-Ag veins at Laodaizhanggou (Fig. 2) may be such an example. These veins predate the Donggou porphyry Mo deposit by ca. 7 m.y. and thus are unlikely formed by magmatic-hydrothermal fluids from Donggou. Laodaizhanggou is broadly coeval with the Taishanmiao intrusive complex and the Zhuyuangou quartz–molybdenite veins, but the large distance between the former and the latter (>8 km; Fig. 2) suggests that genetic link with the Taishanmiao magmatism is less likely. We therefore suggest that a concealed magmatic intrusion, possibly with Mo mineralization, is located at depth beneath and/or to the side of Laodaizhanggou. Given the distribution of Pb-Zn-Ag vein deposits in the area, we propose that a porphyry Mo deposit may be located at depth between Laodaizhanggou, Xizaogou, and Liezishan (Fig. 2).

Silver-Pb-Zn veins are particularly developed in the Xiayu ore field, to the west of the Xiong’ershan district (Fig. 1). These veins have been the largest silver and an important Pb + Zn producer in central China (Chen et al., 2004; Mao et al., 2006; Li et al., 2013b). Previous studies favor a magmatic origin for these Ag-Pb-Zn veins (Fig. 1; Mao et al., 2006; Ye, 2006; Gao et al., 2010a, 2011). While no porphyry Mo deposits have been recognized, as yet, with these large Ag-Pb-Zn resources in the Xiayu ore field, we propose that Xiayu ore field may be a potential exploration target for porphyry Mo deposits.

Conclusions

The Fudian ore field in the southern NCC contains the Donggou porphyry Mo deposit and several Pb-Zn-Ag vein deposits (e.g., Sanyuangou, Wangpingxigou, Laodaizhanggou). New geochronological data show that the Donggou porphyry (LA-ICP-MS zircon U-Pb = 117.8 ± 0.9 Ma), the Donggou Mo deposit (molybdenite Re-Os = 117.5 ± 0.8 and 116.4 ± 0.6 Ma), and the Sanyuangou Pb-Zn-Ag veins (sericite 40Ar/39Ar = 115.9 ± 0.9) formed contemporaneously in a short period during the Early
Cretaceous. Trace element compositions of pyrite from Donggou and Sanyangou are consistent with metal zonation from central Mo ores to peripheral Pb-Zn-sulfide veins, typical of porphyry Cu/Mo deposits worldwide. In-situ lead isotopic analysis of pyrite suggests a common metal source for the Donggou porphyry Mo deposit and Sanyangou Pb-Zn-Ag vein deposit. The trace element and lead isotope data of pyrite thus confirm a magmatic-hydrothermal origin for the Sanyangou Pb-Zn-Ag veins and its genetic link to the Donggou porphyry Mo deposit. Recognition of a porphyry-related magmatic-hydrothermal system in the Fudian ore field has significant implications for future exploration of Mo and Pb-Zn-Ag resources in the southern NCC. Where either base metal veins or porphyry Mo ore bodies are known in a given area, they provide a potential exploration vector for the other mineralization style.

Acknowledgments

We acknowledge financial supports of National Natural Science Foundation of China (41325007, 41402066, 91414301, 91514303) and the Australian Research Council through the Industrial Transformation Research Hub grant and Centre of Excellence Funding Programs. Mr. Ji-Xiang Sui and Xiao-Ye Jin provided help during the fieldwork. We are indebted to Prof. Leonid Danyushevsky and Sarah Gilbert for assistance with LA-ICPMS analyses at CODES, University of Tasmania. Prof. Xin-Fu Zhao are thanked for his insights on an early draft of this paper. The paper benefitted a lot from careful reviews by two anonymous reviewers. Our thanks extend to Profs. Franco Pirajno (Editor-in-Chief) and Yan-Jing Chen (Associate Editor) for editorial handling.

References

Dai, B.Z., Jiang, S.Y., Wang, X.L., 2009. Petrogenesis of the granitic porphyry related to the giant molybdenum deposit in Donggou, Henan province, China: Constraints from petrogeochemistry,

Hawley, J.E., Nichol, I., 1961. Trace elements in pyrite, pyrrhotite and chalcopyrite of different ores. Econ. Geol. 56, 467-487.

Huang, F., Luo, Z.H., Lu, X.X., Chen, B.H., Yang, Z.F., 2010. Geological characteristics, metallogenic epoch and geological significance of the Zhuyuangou molybdenum deposit in Ruyang area, Henan,

Li, N., Chen, Y., Pirajno, F., Gong, H., Mao, S., Ni, Z., 2012c. LA-ICP-MS zircon U-Pb dating, trace
element and Hf isotope geochemistry of the Heyu granite batholith, eastern Qinling, central China:
implications for Mesozoic tectono-magmatic evolution. Lithos 142, 34-47.

Li, N., Chen, Y., Pirajno, F., Ni, Z., 2013a. Timing of the Yuchiling giant porphyry Mo system, and

and tectonic evolution of the khondalite series at the southern margin of the North China Craton:
Geochronological constraints from a 1.85-Ga Mo deposit in the Xiong’ershan area. Precambrian
Res. 269, 1-17.

Li, N., Ulrich, T., Chen, Y., Thomsen, T.B., Pease, V., Pirajno, F., 2012d. Fluid evolution of the
Yuchiling porphyry Mo deposit, East Qinling, China. Ore Geol. Rev. 48, 442-459.

Geol. 109, 89-111.

the east Qinling molybdenum belt in central China and its geodynamic implications. In: J.W. Mao
and F.P. Bierlein (Eds.), Proceedings of the Eighth Biennial SGA Meeting. Mineral Deposit
Research: Meeting the Global Challenge. Springer-Verlag, Beijing, China, 777-780.

Nannihu molybdenum (tungsten) ore field in the eastern Qinling and its geological significance.

2006. SHRIMP zircon U-Pb and molybdenite Re-Os datings for the Leimengou porphyry
molybdenum deposit, western Henan and its geological implication. Geological Review 52, 122-

Li, Z.K., 2013. Metallogenesis of the silver-lead-zinc deposits along the southern margin of the North
English abstract).

Zn deposit, Luoning County, Henan Province: implications for mechanism of silver enrichment.

Ore Geol. Rev. 43, 264-293.

Reich, M., Deditius, A., Chryssoulis, S., Li, J., Ma, C., Parada, M.A., Barra, F., Mittermayr, F., 2013. Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system: A SIMS/EMPA

Wang, S.S., 1983. Age determinations of 40Ar-39Ar and radiogenic 40Ar released characteristics on K-Ar geostandards of China. Scientia Geologica Sinica 4, 315-323.

Figure and table captions

Fig. 1 Geological map showing major mineral districts along the southern margin of the NCC (modified from Mao et al., 2010; Li et al., 2013b). The insert map shows the tectonic location of the southern NCC in Eastern China. Abbreviations: TNCO: Trans-North China Orogen, MCC: metamorphic core complex.

Fig. 2 Geological map of the Fudian ore field showing the locations of the Donggou porphyry Mo deposit and surrounding Pb-Zn-Ag vein deposits (simplified from Bureau of Geological Exploration and Mineral Development of Henan Province, 1992). Abbreviations: F1: Yangping-Wangping fault; F2: Jincun-Fudian fault. For map location see Fig. 1.

Fig. 3 Geological map of the Donggou porphyry Mo deposit (after Ma et al., 2007). For map location see Fig. 2.

Fig. 4 Representative cross sections of the Donggou porphyry Mo deposit, showing distribution and morphology of ore bodies (after Ma et al., 2007). For map location see Fig. 3.

Fig. 5 Photographs showing occurrences and structures of ores at Donggou. (a) The contact zone between the mineralized granite porphyry and the andesite of the Xiong’er Group. Note the molybdenite disseminations both in the granite porphyry and the andesite. (b) Coarse-grained molybdenite disseminated in the granite porphyry. Potassic alteration is well developed in the granite porphyry. (c) Hydrothermal vein consisting of coarse-grained K-feldspar and molybdenite filling the fracture of the andesite. (d) Both the K-feldspar – molybdenite vein and quartz – molybdenite vein cutting the andesite. Note that the K-feldspar – molybdenite veins may be overprinted by a quartz – molybdenite vein. (e) Pyrite-sphalerite-molybdenite vein filling the fracture of the Mo-mineralized andesite. (f) Polymetallic vein cutting the andesite. The sulfide minerals in the vein include pyrite, molybdenite, and galena. Abbreviations: Mo: molybdenite, Kfs: K-feldspar, Qz: quartz, Py: pyrite, Sp: sphalerite, Gn: galena.

Fig. 6 Transmitted-light (a) and reflected-light (b-f) photomicrographs illustrating the mineralogy and textures of the granite porphyry and sulfide ores at Donggou, respectively. (a) Perthite and quartz phenocrysts in the granite porphyry. (b) Stage D1 molybdenite aggregates intergrown with K-feldspar and quartz. (c) Coarse-grained stage D2 molybdenite and quartz vein cutting the potassic zone. (d) Stage D3 chalcopyrite and galena filling microfractures in coarse-grained, euhedral pyrite. (e) Stage D3...
sphalerite intergrown with chalcopyrite and galena cutting massive quartz. (f) Stage D3 galena replacing sphalerite. Abbreviations: Pth: Perthite, Ccp: chalcopyrite, other abbreviations as in Figure 5.

Fig. 7 Paragenetic sequence of the Donggou deposit.

Fig. 8 Photographs showing occurrences and structures of the ores at Sanyuangou. (a) Sulfide veinlets penetrating quartz and ankerite in a steeply-dipping fault zone cutting the quartz diorite. (b) Quartz-galena-sphalerite vein as fracture fillings in the quartz diorite. (c) Coarse-grained sphalerite and galena aggregates in quartz diorite. (d) Massive sphalerite and galena ores replacing quartz diorite breccias. (e) Massive galena-dominated ores. (f) Textural relationship of a vein consisting of the outer siderite and ankerite, the intermediate galena and quartz, and the inner coarse-grained calcite. Abbreviations: Sd: siderite, Ank: ankerite, Cal: calcite; other abbreviations as in Figure 5.

Fig. 9 Reflected-light (a-d) and transmitted-light (e-f) photomicrographs illustrating the mineralogy and textures of sulfide ores and associated alteration at Sanyuangou. (a) Stage S1 pyrite was fractured and filled by paragenetically late chalcopyrite, sphalerite, and galena. (b) Stage S2 bornite and sphalerite replacing pyrite; all of which were altered by galena. Note that tetrahedrite is intergrown with bornite. (c) Stage S2 covellite forming selvages around foam-like pyrite; chalcopyrite forming inclusions in sphalerite. (d) Stage S2 sphalerite with chalcopyrite inclusions filled and replaced by galena. (e) Stage S3 calcite intergrown with coarse-grained quartz. (f) Sericite aggregates intergrown associated with Pb-Zn sulfide mineralization. Abbreviations: Ccp: chalcopyrite, Bn: bornite, Ttr: tetrahedrite, Cv: covellite, Cal: calcite, Ser: sericite; other abbreviations as in Figure 5.

Fig. 10 Paragenetic sequence of the Sanyuangou deposit.

Fig. 11 U-Pb concordia diagrams of zircons from the Donggou granite porphyry (a), the Sanyuangou quartz diorite (b), and the Wangpingxigou quartz monzonite (c).

Fig. 12 40Ar/39Ar age spectra (a) and inverse isochron (b) of stage S2 sericite from Sanyuangou.

Fig. 13 Diagrams showing the concentrations of selected trace elements for pyrite from Donggou and Sanyuangou. Red dotted line indicates the detection limits of the trace elements.

Fig. 14 Correlation between Co and Ni for pyrite from Donggou and Sanyuangou. The shadow areas show the average detection limit of the trace elements.

Fig. 15 Thorogenic (a) and uranogenic (b) lead isotopic diagrams for pyrites from Donggou and Sanyuangou. The dotted lines are trend lines for the spots. NHRL shows the North hemisphere reference line (Hart, 1984).
Table 1 Re-Os isotope data of molybdenite from the Donggou deposit.

Table 2 40Ar/39Ar analytical results of stage S2 sericite from Sanyuangou.

Table 3 Lead isotopic compositions of pyrite from Donggou and Sanyuangou

Appendix 1 Laser ablation ICP-MS zircon U-Pb dating results for the Donggou granite porphyry, Sanyangou quartz diorite, and Wangpingxigou quartz monzonite.

Appendix 2 Laser ablation ICP-MS spot analyses of pyrite from Donggou and Sanyuangou
Li et al. Figure 3

Cenozoic sediments

Proterozoic quartz diorite

Mesozoic granite porphyry

Paleoproterozoic Xiong'er Group:
- dacite, dacite rhyolite
- andesite, basaltic andesite

Fault

Cross section and number

Sampling location
<table>
<thead>
<tr>
<th>Stage</th>
<th>Mineral</th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>D4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Molybdenite</td>
<td>......</td>
<td>......</td>
<td></td>
<td>......</td>
</tr>
<tr>
<td></td>
<td>Scheelite</td>
<td>-----</td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Magnetite</td>
<td>-----</td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pyrite</td>
<td>-----</td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chalcopyrite</td>
<td>-----</td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sphalerite</td>
<td>-----</td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Galena</td>
<td>-----</td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>K-feldspar</td>
<td>*****</td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Quartz</td>
<td>*****</td>
<td>*****</td>
<td>*****</td>
<td>*****</td>
</tr>
<tr>
<td></td>
<td>Biotite</td>
<td>*****</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sericite</td>
<td>*****</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chlorite</td>
<td>*****</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fluorite</td>
<td></td>
<td>*****</td>
<td>*****</td>
<td>*****</td>
</tr>
<tr>
<td></td>
<td>Anhydrite</td>
<td></td>
<td>*****</td>
<td>*****</td>
<td>*****</td>
</tr>
<tr>
<td></td>
<td>Calcite</td>
<td></td>
<td>*****</td>
<td></td>
<td>*****</td>
</tr>
</tbody>
</table>

- **abundant**
- **common**
- **minor**
Li et al. Figure 10

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Stage</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyrite</td>
<td></td>
<td>_______</td>
<td>_______</td>
<td>_______</td>
</tr>
<tr>
<td>Pyrrhotite</td>
<td></td>
<td>_______</td>
<td>_______</td>
<td>_______</td>
</tr>
<tr>
<td>Sphalerite</td>
<td></td>
<td>_______</td>
<td>_______</td>
<td>_______</td>
</tr>
<tr>
<td>Galena</td>
<td></td>
<td>_______</td>
<td>_______</td>
<td>_______</td>
</tr>
<tr>
<td>Chalcopyrite</td>
<td></td>
<td>_______</td>
<td>_______</td>
<td>_______</td>
</tr>
<tr>
<td>Bornite</td>
<td></td>
<td>_______</td>
<td>_______</td>
<td>_______</td>
</tr>
<tr>
<td>Tetrahedrite</td>
<td></td>
<td>_______</td>
<td>_______</td>
<td>_______</td>
</tr>
<tr>
<td>Covellite</td>
<td></td>
<td>_______</td>
<td>_______</td>
<td>_______</td>
</tr>
<tr>
<td>Quartz</td>
<td></td>
<td>_______</td>
<td>_______</td>
<td>_______</td>
</tr>
<tr>
<td>Sericite</td>
<td></td>
<td>_______</td>
<td>_______</td>
<td>_______</td>
</tr>
<tr>
<td>Chlorite</td>
<td></td>
<td>_______</td>
<td>_______</td>
<td>_______</td>
</tr>
<tr>
<td>Siderite</td>
<td></td>
<td>_______</td>
<td>_______</td>
<td>_______</td>
</tr>
<tr>
<td>Ankerite</td>
<td></td>
<td>_______</td>
<td>_______</td>
<td>_______</td>
</tr>
<tr>
<td>Calcite</td>
<td></td>
<td>_______</td>
<td>_______</td>
<td>_______</td>
</tr>
<tr>
<td>Fluorite</td>
<td></td>
<td>_______</td>
<td>_______</td>
<td>_______</td>
</tr>
</tbody>
</table>

- **abundant**
- **common**
- **minor**
Li et al. Figure 12

Plateau age = 115.9 ± 0.9 Ma; MSWD = 0.7
Includes 92.7% of the 39Ar

Age = 116.0 ± 1.2 Ma
Initial 40Ar / 39Ar = 299.0 ± 6.0
MSWD = 10.9
Li et al. Figure 14

The figure shows a scatter plot with data points representing the concentrations of Co (in ppm) and Ni (in ppm). The x-axis represents Ni concentration, and the y-axis represents Co concentration. The data points are color-coded, with green representing Sanyuangou and blue representing Donggou. A line with the equation Co/Ni = 1 is also plotted, indicating the ratio of Co to Ni.
<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Location</th>
<th>Weight (mg)</th>
<th>Re (ppm) ±</th>
<th>Re(^{187}) (ppm) ±</th>
<th>Os(^{187}) (ppb) ±</th>
<th>Age (Ma) ±</th>
<th>±(^a)</th>
<th>±(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DG03</td>
<td>Quartz-molybdenite vein</td>
<td>27</td>
<td>2.6</td>
<td>0.01</td>
<td>1.7</td>
<td>0.01</td>
<td>3.2</td>
<td>0.02</td>
</tr>
<tr>
<td>FDG08</td>
<td>Quartz-polymetallic sulfide</td>
<td>20</td>
<td>7.1</td>
<td>0.03</td>
<td>4.4</td>
<td>0.02</td>
<td>8.6</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Note: \(^a\) analytical uncertainty, \(^b\) analytical and decay constant uncertainty.
Table 2 \(^{40}\text{Ar}/^{39}\text{Ar}\) analytical results of the ore-related sericite from the Sanyuangou deposit

<table>
<thead>
<tr>
<th>T (°C)</th>
<th>(^{40}\text{Ar}/^{39}\text{Ar})</th>
<th>(^{36}\text{Ar}/^{39}\text{Ar})</th>
<th>(^{37}\text{Ar}/^{39}\text{Ar})</th>
<th>(^{38}\text{Ar}/^{39}\text{Ar})</th>
<th>(^{40}\text{Ar})* (%)</th>
<th>(^{40}\text{Ar})*/(^{39}\text{Ar})(_K)</th>
<th>(^{39}\text{Ar})(_K) (×10^{-14} \text{mol})</th>
<th>(^{39}\text{Ar}_{\text{Cumulative}}) (%)</th>
<th>Age (Ma)</th>
<th>± 1σ (Ma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>137.919</td>
<td>0.443</td>
<td>0.000</td>
<td>0.103</td>
<td>5.03</td>
<td>6.931</td>
<td>0.05</td>
<td>0.21</td>
<td>57</td>
<td>10</td>
</tr>
<tr>
<td>700</td>
<td>31.308</td>
<td>0.064</td>
<td>0.129</td>
<td>0.027</td>
<td>39.51</td>
<td>12.371</td>
<td>0.23</td>
<td>1.28</td>
<td>100</td>
<td>1.8</td>
</tr>
<tr>
<td>800</td>
<td>30.214</td>
<td>0.053</td>
<td>0.000</td>
<td>0.022</td>
<td>48.44</td>
<td>14.636</td>
<td>1.57</td>
<td>8.42</td>
<td>117.7</td>
<td>1.2</td>
</tr>
<tr>
<td>850</td>
<td>15.851</td>
<td>0.005</td>
<td>0.000</td>
<td>0.013</td>
<td>90.53</td>
<td>14.351</td>
<td>0.58</td>
<td>11.67</td>
<td>115.5</td>
<td>1.1</td>
</tr>
<tr>
<td>900</td>
<td>14.868</td>
<td>0.001</td>
<td>0.007</td>
<td>0.013</td>
<td>97.12</td>
<td>14.441</td>
<td>1.29</td>
<td>16.94</td>
<td>116.1</td>
<td>1.1</td>
</tr>
<tr>
<td>950</td>
<td>14.569</td>
<td>0.001</td>
<td>0.007</td>
<td>0.013</td>
<td>98.76</td>
<td>14.388</td>
<td>1.91</td>
<td>25.63</td>
<td>115.6</td>
<td>1.1</td>
</tr>
<tr>
<td>1000</td>
<td>14.866</td>
<td>0.001</td>
<td>0.032</td>
<td>0.013</td>
<td>97.22</td>
<td>14.453</td>
<td>11.72</td>
<td>79.05</td>
<td>116.3</td>
<td>1.1</td>
</tr>
<tr>
<td>1050</td>
<td>14.760</td>
<td>0.001</td>
<td>0.067</td>
<td>0.013</td>
<td>97.52</td>
<td>14.395</td>
<td>2.27</td>
<td>89.41</td>
<td>115.8</td>
<td>1.1</td>
</tr>
<tr>
<td>1150</td>
<td>15.173</td>
<td>0.003</td>
<td>0.383</td>
<td>0.014</td>
<td>93.62</td>
<td>14.210</td>
<td>0.99</td>
<td>93.93</td>
<td>114.4</td>
<td>1.2</td>
</tr>
<tr>
<td>1250</td>
<td>22.021</td>
<td>0.028</td>
<td>0.051</td>
<td>0.018</td>
<td>62.07</td>
<td>13.669</td>
<td>1.02</td>
<td>98.58</td>
<td>110.1</td>
<td>1.2</td>
</tr>
<tr>
<td>1400</td>
<td>147.832</td>
<td>0.047</td>
<td>0.000</td>
<td>0.099</td>
<td>6.88</td>
<td>10.164</td>
<td>0.31</td>
<td>100</td>
<td>82.5</td>
<td>2.3</td>
</tr>
</tbody>
</table>

Note: the terms \(^{40}\text{Ar}\)* and \(^{39}\text{Ar}\)\(_K\) denote radiogenic \(^{40}\text{Ar}\) and nucleogenic \(^{39}\text{Ar}\), respectively.
Deposit	Sample no.	Pb206/Pb207	2α	Pb207/Pb206	2α	Pb208/Pb206	2α	Pb207/Pb206	2α	Tl or Tl206Tl	2α	Total Pb	Total Tl		
Donggou	FDG09-1	2.198	0.0002	0.890	0.0001	38.147	0.009	15.446	0.003	17.367	0.002	2.425	0.00009	30.88	2.58
	FDG09-2	2.198	0.0001	0.890	0.0001	38.164	0.006	15.447	0.003	17.361	0.002	2.425	0.00009	37.13	2.59
	FDG09-3	2.198	0.0114	0.889	0.0004	38.155	0.098	15.419	0.027	17.328	0.034	2.425	0.00008	15.30	2.60
	FDG10-1	2.198	0.0006	0.890	0.0004	38.140	0.087	15.427	0.036	17.332	0.039	2.426	0.00009	1.79	2.76
	FDG10-2	2.198	0.0005	0.889	0.0002	38.243	0.067	15.452	0.022	17.385	0.022	2.426	0.00011	0.95	2.77
	FDG10-3	2.198	0.0004	0.890	0.0003	38.426	0.099	15.551	0.038	17.471	0.038	2.426	0.00002	0.54	2.75
	FDG10-4	2.199	0.0002	0.889	0.0002	38.118	0.039	15.408	0.014	17.335	0.016	2.426	0.00011	0.816	2.72
	FDG11-1	2.189	0.0071	0.890	0.0008	38.396	0.196	15.550	0.052	17.489	0.046	2.426	0.00010	0.62	2.60
	FDG11-2	2.196	0.0011	0.891	0.0006	38.080	0.168	15.439	0.069	17.336	0.085	2.426	0.00009	0.37	2.77
	FDG11-3	2.199	0.0008	0.888	0.0007	38.436	0.191	15.527	0.090	17.517	0.088	2.426	0.00010	7.12	2.73
	mean	2.197	0.0013	0.890	0.0004	38.230	0.095	15.466	0.035	17.391	0.037	2.426	0.00009	10.21	2.69
Sanyuangou	SY05-1	2.196	0.0005	0.892	0.0003	38.012	0.011	15.432	0.005	17.296	0.005	2.426	0.00010	11.49	2.71
	SY05-2	2.199	0.0001	0.893	0.0000	38.021	0.003	15.443	0.001	17.295	0.001	2.426	0.00010	37.55	2.73
	SY05-3	2.195	0.0012	0.890	0.0006	38.008	0.106	15.454	0.040	17.323	0.046	2.425	0.00009	0.48	2.73
	SY05-4	2.191	0.0012	0.888	0.0005	38.218	0.085	15.469	0.037	17.440	0.040	2.425	0.00007	0.48	2.76
	SY05-5	2.198	0.0009	0.889	0.0006	38.337	0.175	15.566	0.076	17.495	0.084	2.425	0.00009	0.26	2.66
	SY06-1	2.196	0.0005	0.892	0.0003	38.048	0.036	15.451	0.017	17.318	0.017	2.425	0.00009	6.23	2.69
	SY06-2	2.198	0.0003	0.894	0.0002	38.047	0.007	15.445	0.003	17.278	0.003	2.425	0.00008	27.78	2.66
	SY06-3	2.198	0.0002	0.893	0.0002	38.006	0.014	15.432	0.007	17.286	0.006	2.425	0.00009	17.19	2.71
	mean	2.198	0.0005	0.893	0.0001	38.012	0.005	15.435	0.002	17.286	0.002	2.425	0.00010	55.60	2.75
	mean	2.198	0.0005	0.892	0.0003	38.070	0.047	15.458	0.020	17.329	0.021	2.425	0.00009	15.85	2.71
Appendix 1

Results of LA-ICP-MS zircon U-Pb dating for the Donggou granite porphyry, Sanyangou quartz diorite, and Wangpingxiugou quartz monzonite

Donggou granite porphyry, sample DG01

<table>
<thead>
<tr>
<th>Spot</th>
<th>Th</th>
<th>U</th>
<th>Th/U</th>
<th>206/207 Pb</th>
<th>± 1σ</th>
<th>206/238 U</th>
<th>± 1σ</th>
<th>206/235 U</th>
<th>± 1σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>DG01-1</td>
<td>0.0490</td>
<td>0.0029</td>
<td>0.1236</td>
<td>0.0071</td>
<td>0.0184</td>
<td>0.0003</td>
<td>150</td>
<td>50</td>
<td>118</td>
</tr>
<tr>
<td>DG01-2</td>
<td>0.0496</td>
<td>0.0030</td>
<td>0.1238</td>
<td>0.0069</td>
<td>0.0184</td>
<td>0.0002</td>
<td>176</td>
<td>147</td>
<td>119</td>
</tr>
<tr>
<td>DG01-3</td>
<td>0.0550</td>
<td>0.0012</td>
<td>0.1411</td>
<td>0.0033</td>
<td>0.0184</td>
<td>0.0002</td>
<td>413</td>
<td>50</td>
<td>134</td>
</tr>
<tr>
<td>DG01-4</td>
<td>0.0495</td>
<td>0.0032</td>
<td>0.1229</td>
<td>0.0074</td>
<td>0.0185</td>
<td>0.0003</td>
<td>172</td>
<td>150</td>
<td>118</td>
</tr>
<tr>
<td>DG01-5</td>
<td>0.0488</td>
<td>0.0023</td>
<td>0.1239</td>
<td>0.0058</td>
<td>0.0185</td>
<td>0.0002</td>
<td>200</td>
<td>118</td>
<td>119</td>
</tr>
<tr>
<td>DG01-6</td>
<td>0.0501</td>
<td>0.0039</td>
<td>0.1253</td>
<td>0.0097</td>
<td>0.0184</td>
<td>0.0003</td>
<td>211</td>
<td>181</td>
<td>120</td>
</tr>
<tr>
<td>DG01-7</td>
<td>0.0491</td>
<td>0.0025</td>
<td>0.1232</td>
<td>0.0060</td>
<td>0.0184</td>
<td>0.0002</td>
<td>154</td>
<td>150</td>
<td>118</td>
</tr>
<tr>
<td>DG01-8</td>
<td>0.0513</td>
<td>0.0033</td>
<td>0.1289</td>
<td>0.0087</td>
<td>0.0185</td>
<td>0.0003</td>
<td>254</td>
<td>148</td>
<td>123</td>
</tr>
<tr>
<td>DG01-9</td>
<td>0.0485</td>
<td>0.0017</td>
<td>0.1240</td>
<td>0.0045</td>
<td>0.0185</td>
<td>0.0002</td>
<td>124</td>
<td>83</td>
<td>119</td>
</tr>
<tr>
<td>DG01-10</td>
<td>0.0500</td>
<td>0.0033</td>
<td>0.1281</td>
<td>0.0086</td>
<td>0.0184</td>
<td>0.0002</td>
<td>195</td>
<td>156</td>
<td>122</td>
</tr>
<tr>
<td>DG01-11</td>
<td>0.0507</td>
<td>0.0044</td>
<td>0.1254</td>
<td>0.0107</td>
<td>0.0185</td>
<td>0.0004</td>
<td>228</td>
<td>204</td>
<td>120</td>
</tr>
<tr>
<td>DG01-12</td>
<td>0.0498</td>
<td>0.0031</td>
<td>0.1234</td>
<td>0.0074</td>
<td>0.0185</td>
<td>0.0003</td>
<td>187</td>
<td>146</td>
<td>118</td>
</tr>
<tr>
<td>DG01-13</td>
<td>0.0589</td>
<td>0.0035</td>
<td>0.1440</td>
<td>0.0076</td>
<td>0.0184</td>
<td>0.0003</td>
<td>561</td>
<td>127</td>
<td>137</td>
</tr>
</tbody>
</table>

Sanyangou quartz diorite, sample SY01

<table>
<thead>
<tr>
<th>Spot</th>
<th>Th</th>
<th>U</th>
<th>Th/U</th>
<th>206/238 U</th>
<th>± 1σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>SY01-1</td>
<td>0.016</td>
<td>4.7579</td>
<td>0.842</td>
<td>0.3168</td>
<td>0.0041</td>
</tr>
<tr>
<td>SY01-2</td>
<td>0.013</td>
<td>4.6202</td>
<td>0.592</td>
<td>0.3093</td>
<td>0.0019</td>
</tr>
<tr>
<td>SY01-3</td>
<td>0.011</td>
<td>4.6456</td>
<td>0.577</td>
<td>0.312</td>
<td>0.0024</td>
</tr>
<tr>
<td>SY01-4</td>
<td>0.008</td>
<td>4.6809</td>
<td>0.437</td>
<td>0.3129</td>
<td>0.0017</td>
</tr>
<tr>
<td>SY01-5</td>
<td>0.007</td>
<td>4.6555</td>
<td>0.382</td>
<td>0.3131</td>
<td>0.0012</td>
</tr>
<tr>
<td>SY01-6</td>
<td>0.006</td>
<td>4.6203</td>
<td>0.370</td>
<td>0.3113</td>
<td>0.0019</td>
</tr>
<tr>
<td>SY01-7</td>
<td>0.006</td>
<td>4.6717</td>
<td>0.069</td>
<td>0.3165</td>
<td>0.0038</td>
</tr>
<tr>
<td>SY01-8</td>
<td>0.005</td>
<td>4.6689</td>
<td>0.055</td>
<td>0.3163</td>
<td>0.0017</td>
</tr>
<tr>
<td>SY01-9</td>
<td>0.005</td>
<td>4.7115</td>
<td>0.0436</td>
<td>0.3173</td>
<td>0.0017</td>
</tr>
<tr>
<td>SY01-10</td>
<td>0.004</td>
<td>4.7737</td>
<td>0.0613</td>
<td>0.3167</td>
<td>0.0025</td>
</tr>
<tr>
<td>SY01-11</td>
<td>0.003</td>
<td>4.7042</td>
<td>0.0645</td>
<td>0.3149</td>
<td>0.0024</td>
</tr>
<tr>
<td>SY01-12</td>
<td>0.002</td>
<td>4.8193</td>
<td>0.0706</td>
<td>0.3211</td>
<td>0.0025</td>
</tr>
<tr>
<td>SY01-13</td>
<td>0.001</td>
<td>4.6636</td>
<td>0.0745</td>
<td>0.314</td>
<td>0.0022</td>
</tr>
</tbody>
</table>

Wangpingxiugou quartz monzonite, sample WP01

<table>
<thead>
<tr>
<th>Spot</th>
<th>Th</th>
<th>U</th>
<th>Th/U</th>
<th>206/207 Pb</th>
<th>± 1σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>WP01-1</td>
<td>0.118</td>
<td>0.0017</td>
<td>0.5092</td>
<td>0.0813</td>
<td>0.3282</td>
</tr>
<tr>
<td>WP01-2</td>
<td>0.118</td>
<td>0.0019</td>
<td>0.5087</td>
<td>0.0838</td>
<td>0.3272</td>
</tr>
<tr>
<td>WP01-3</td>
<td>0.118</td>
<td>0.0019</td>
<td>0.5310</td>
<td>0.0992</td>
<td>0.3262</td>
</tr>
<tr>
<td>WP01-4</td>
<td>0.118</td>
<td>0.0014</td>
<td>0.505</td>
<td>0.0627</td>
<td>0.3265</td>
</tr>
<tr>
<td>WP01-5</td>
<td>0.113</td>
<td>0.0008</td>
<td>0.5146</td>
<td>0.0536</td>
<td>0.3283</td>
</tr>
<tr>
<td>WP01-6</td>
<td>0.114</td>
<td>0.0012</td>
<td>0.5177</td>
<td>0.0668</td>
<td>0.3286</td>
</tr>
<tr>
<td>WP01-7</td>
<td>0.113</td>
<td>0.001</td>
<td>0.5154</td>
<td>0.0478</td>
<td>0.3272</td>
</tr>
<tr>
<td>WP01-8</td>
<td>0.116</td>
<td>0.0017</td>
<td>0.5022</td>
<td>0.0736</td>
<td>0.3231</td>
</tr>
<tr>
<td>WP01-9</td>
<td>0.127</td>
<td>0.0009</td>
<td>0.5136</td>
<td>0.0475</td>
<td>0.3278</td>
</tr>
<tr>
<td>WP01-10</td>
<td>0.103</td>
<td>0.0016</td>
<td>0.4992</td>
<td>0.0706</td>
<td>0.3257</td>
</tr>
<tr>
<td>WP01-11</td>
<td>0.102</td>
<td>0.0012</td>
<td>0.4971</td>
<td>0.0587</td>
<td>0.324</td>
</tr>
<tr>
<td>WP01-12</td>
<td>0.114</td>
<td>0.0013</td>
<td>0.5024</td>
<td>0.0631</td>
<td>0.3264</td>
</tr>
<tr>
<td>WP01-13</td>
<td>0.119</td>
<td>0.0023</td>
<td>0.5089</td>
<td>0.1138</td>
<td>0.3269</td>
</tr>
<tr>
<td>WP01-14</td>
<td>0.112</td>
<td>0.0017</td>
<td>0.5138</td>
<td>0.0805</td>
<td>0.3293</td>
</tr>
<tr>
<td>WP01-15</td>
<td>0.112</td>
<td>0.0020</td>
<td>0.5080</td>
<td>0.0900</td>
<td>0.3287</td>
</tr>
<tr>
<td>Analysis no.</td>
<td>Cr</td>
<td>Fe</td>
<td>Ni</td>
<td>Au</td>
<td>Hf</td>
</tr>
<tr>
<td>-------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>SY03-1-9</td>
<td>0.01</td>
<td>3.80</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>SY03-2-7</td>
<td>0.01</td>
<td>3.80</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>SY03-2-2</td>
<td>0.01</td>
<td>3.80</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>SY03-1-1</td>
<td>0.01</td>
<td>3.80</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>SY04-1-3</td>
<td>0.01</td>
<td>3.80</td>
<td>0.01</td>
<td>0.02</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Note: The text box contains a table of chemical analysis data for various elements, including Cr, Fe, Ni, Au, Hf, Mo, and Pb.
Highlights:

1) New geochronological data indicate that the Donggou Mo deposit and the spatially associated Sanyuangou Pb-Zn-Ag veins formed contemporaneously in the early Cretaceous (117.5-115.9 Ma).

2) Trace element compositions and lead isotopes of pyrite by in-situ LA-ICP-MS analyses confirm a magmatic-hydrothermal origin for the Sanyuangou Pb-Zn-Ag deposit.

3) The Donggou and Sanyuangou deposits form a typical porphyry-related magmatic-hydrothermal system. This model has broad implications for further exploration of Mo and Pb-Zn-Ag resources in the area.