Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham Research Online
You are in:

Simple and cost-effective methods for precise analysis of trace element abundances in geological materials with ICP-MS.

Chen, S. and Wang, X.H. and Niu, Y.L. and Sun, P. and Duan, M. and Xiao, Y.Y. and Guo, P.Y. and Gong, H.M. and Wang, G.D. and Xue, Q.Q. (2017) 'Simple and cost-effective methods for precise analysis of trace element abundances in geological materials with ICP-MS.', Science bulletin., 62 (4). pp. 277-289.

Abstract

Inductively coupled plasma mass spectrometry (ICP-MS) is the most commonly used technique to determine the abundances of trace elements in a wide range of geological materials. However, incomplete sample digestion, isobaric interferences and instrumental drift remain obvious problems that must be overcome in order to obtain precise and accurate results. For this reason, we have done many experiments and developed a set of simple, cost-effective and practical methods widely applicable for precise and rapid determination of trace element abundances in geological materials using ICP-MS. Commonly used high-pressure digestion technique is indeed effective in decomposing refractory phases, but this inevitably produces fluoride complexes that create new problems. We demonstrate that the fluoride complexes formed during high-pressure digestion can be readily re-dissolved using high-pressure vessel at 190 °C for only 2 h for 50 mg sample. In the case of isobaric interferences, although oxide (e.g., MO+/M+) and hydroxide (e.g., MOH+/M+) productivity is variable between runs, the (MO+/M+)/(CeO+/Ce+) and (MOH+/M+)/(CeO+/Ce+) ratios remain constant, making isobaric interference correction for all other elements of interest straightforward, for which we provide an easy-to-use off-line procedure. We also show that mass-time-intensity drift curve is smooth as recognized previously, for which the correction can be readily done by analyzing a quality-control (QC) solution and using off-line Excel VBA procedure without internal standards. With these methods, we can produce data in reasonable agreement with recommended values of international rock reference standards with a relative error of <8% and precision generally better than 5%. Importantly, compared to the widely used analytical practice, we can effectively save >60% of time (e.g., <24 h vs. >60 h).

Item Type:Article
Full text:(AM) Accepted Manuscript
Available under License - Creative Commons Attribution Non-commercial No Derivatives.
Download PDF
(3379Kb)
Status:Peer-reviewed
Publisher Web site:https://doi.org/10.1016/j.scib.2017.01.004
Publisher statement:© 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
Date accepted:26 December 2016
Date deposited:16 March 2017
Date of first online publication:04 January 2017
Date first made open access:04 January 2018

Save or Share this output

Export:
Export
Look up in GoogleScholar