We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

‘Looting marks’ in space-borne SAR imagery : measuring rates of archaeological looting in Apamea (Syria) with TerraSAR-X Staring Spotlight.

Tapete, D. and Cigna, F. and Donoghue, D.N.M. (2016) '‘Looting marks’ in space-borne SAR imagery : measuring rates of archaeological looting in Apamea (Syria) with TerraSAR-X Staring Spotlight.', Remote sensing of environment., 178 . pp. 42-58.


In archaeological remote sensing, space-borne Synthetic Aperture Radar (SAR) has not been used so far to monitor ‘looting’ (i.e. illegal excavations in heritage sites) mainly because of the spatial resolution of SAR images, typically not comparable to the ground dimensions of looting features. This paper explores the potential of the new TerraSAR-X beam mode Staring Spotlight (ST) to investigate looting within a workflow of radar backscattering change detection. A bespoke time series of five single polarisation, ascending mode, ST scenes with an unprecedented azimuth resolution of 0.24 m was acquired over the archaeological site of Apamea in western Syria, from October 2014 to June 2015 with a regular sampling of one image every two months. Formerly included in the Tentative List of UNESCO, the site has been heavily looted from at least early 2012 to May 2014, as confirmed by Google Earth Very High Resolution (VHR) optical imagery. Building upon the theory of SAR imaging, we develop a novel conceptual model of ‘looting marks’, identify marks due to occurrence of new looting and discriminate them from alteration (e.g. filling) of pre-existing looting holes. ‘Looting marks’ appear as distinctive patterns of shadow and layover which are visible in the ground-range reprojected ST image and generated by the morphology of the holes. The recognition of looting marks within ratio maps of radar backscatter (σ0) between consecutive ST scenes allows quantification of the magnitude, spatial distribution and rates of looting activities. In agreement with the estimates based on Google Earth imagery, the ST acquired in October 2014 shows that ~ 45% of the site was looted. In the following eight months new looting happened locally, with holes mainly dug along the margins of the already looted areas. Texture values of ~ 0.31 clearly distinguish these holes from the unaltered, bare ground nearby. Hot spots of change are identified based on the temporal variability of σ0, and colour composites indicate where repeated looting and alteration of existing holes occurred. Most looting marks are observed north of the two main Roman decumani. Looting intensified almost steadily from December 2014, with over 1500 new marks in February–April 2015. The estimated rates of looting increased from 214 looting marks/month in October–December 2014 to over 780 marks/month in April–June 2015, and numerically express the dynamic nature of the phenomenon to which Apamea is still exposed. The method of identifying looting marks in VHR radar images therefore proves a reliable opportunity for archaeologists and image analysts to measure remotely the scale of looting and monitor its temporal evolution.

Item Type:Article
Full text:(VoR) Version of Record
Available under License - Creative Commons Attribution.
Download PDF
Publisher Web site:
Publisher statement:© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (
Date accepted:25 February 2016
Date deposited:05 April 2017
Date of first online publication:11 March 2016
Date first made open access:05 April 2017

Save or Share this output

Look up in GoogleScholar