We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

The X-ray and mid-infrared luminosities in luminous type 1 quasars.

Chen(陳建廷), Chien-Ting J. and Hickox, Ryan C. and Goulding, Andrew D. and Stern, Daniel and Assef, Roberto and Kochanek, Christopher S. and Brown, Michael J. I. and Harrison, Chris M. and Hainline, Kevin N. and Alberts, Stacey and Alexander, David M. and Brodwin, Mark and Moro, Agnese Del and Forman, William R. and Gorjian, Varoujan and Jones, Christine and Murray, Stephen S. and Pope, Alexandra and Rovilos, Emmanouel (2017) 'The X-ray and mid-infrared luminosities in luminous type 1 quasars.', Astrophysical journal., 837 (2). p. 145.


Several recent studies have reported different intrinsic correlations between the active galactic nucleus (AGN) mid-IR luminosity (${L}_{\mathrm{MIR}}$) and the rest-frame 2–10 keV luminosity (L X) for luminous quasars. To understand the origin of the difference in the observed ${L}_{{\rm{X}}}\mbox{--}{L}_{\mathrm{MIR}}$ relations, we study a sample of 3247 spectroscopically confirmed type 1 AGNs collected from Boötes, XMM-COSMOS, XMM-XXL-North, and the Sloan Digital Sky Survey quasars in the Swift/XRT footprint spanning over four orders of magnitude in luminosity. We carefully examine how different observational constraints impact the observed ${L}_{{\rm{X}}}\mbox{--}{L}_{\mathrm{MIR}}$ relations, including the inclusion of X-ray-nondetected objects, possible X-ray absorption in type 1 AGNs, X-ray flux limits, and star formation contamination. We find that the primary factor driving the different ${L}_{{\rm{X}}}\mbox{--}{L}_{\mathrm{MIR}}$ relations reported in the literature is the X-ray flux limits for different studies. When taking these effects into account, we find that the X-ray luminosity and mid-IR luminosity (measured at rest-frame $6\,\mu {\rm{m}}$, or ${L}_{6\mu {\rm{m}}}$) of our sample of type 1 AGNs follow a bilinear relation in the log–log plane: $\mathrm{log}{L}_{{\rm{X}}}=(0.84\pm 0.03)\times \mathrm{log}{L}_{6\mu {\rm{m}}}/{10}^{45}$ erg s−1 + (44.60 ± 0.01) for ${L}_{6\mu {\rm{m}}}\lt {10}^{44.79}$ erg s−1, and $\mathrm{log}{L}_{{\rm{X}}}=(0.40\pm 0.03)\times \mathrm{log}{L}_{6\mu {\rm{m}}}/{10}^{45}$ erg s−1 + (44.51 ± 0.01) for ${L}_{6\mu {\rm{m}}}\,\geqslant {10}^{44.79}$ erg s−1. This suggests that the luminous type 1 quasars have a shallower ${L}_{{\rm{X}}}\mbox{--}{L}_{6\mu {\rm{m}}}$ correlation than the approximately linear relations found in local Seyfert galaxies. This result is consistent with previous studies reporting a luminosity-dependent ${L}_{{\rm{X}}}\mbox{--}{L}_{\mathrm{MIR}}$ relation and implies that assuming a linear ${L}_{{\rm{X}}}\mbox{--}{L}_{6\mu {\rm{m}}}$ relation to infer the neutral gas column density for X-ray absorption might overestimate the column densities in luminous quasars.

Item Type:Article
Full text:(VoR) Version of Record
Download PDF
Publisher Web site:
Publisher statement:© 2017. The American Astronomical Society. All rights reserved.
Date accepted:17 January 2017
Date deposited:03 July 2017
Date of first online publication:13 March 2017
Date first made open access:03 July 2017

Save or Share this output

Look up in GoogleScholar