Giani, S. and Grubišić, L. and Hakula, H. and Ovall, J. S. (2017) 'An a posteriori estimator of eigenvalue/eigenvector error for penalty-type discontinuous Galerkin methods.', Applied mathematics and computation., 319 . pp. 562-574.
Abstract
We provide an abstract framework for analyzing discretization error for eigenvalue problems discretized by discontinuous Galerkin methods such as the local discontinuous Galerkin method and symmetric interior penalty discontinuous Galerkin method. The analysis applies to clusters of eigenvalues that may include degenerate eigenvalues. We use asymptotic perturbation theory for linear operators to analyze the dependence of eigenvalues and eigenspaces on the penalty parameter. We first formulate the DG method in the framework of quadratic forms and construct a companion infinite dimensional eigenvalue problem. With the use of the companion problem, the eigenvalue/vector error is estimated as a sum of two components. The first component can be viewed as a “non-conformity” error that we argue can be neglected in practical estimates by properly choosing the penalty parameter. The second component is estimated a posteriori using auxiliary subspace techniques, and this constitutes the practical estimate.
Item Type: | Article |
---|---|
Full text: | (AM) Accepted Manuscript Available under License - Creative Commons Attribution Non-commercial No Derivatives. Download PDF (239Kb) |
Status: | Peer-reviewed |
Publisher Web site: | https://doi.org/10.1016/j.amc.2017.07.007 |
Publisher statement: | © 2017 This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ |
Date accepted: | 02 July 2017 |
Date deposited: | 04 July 2017 |
Date of first online publication: | 18 July 2017 |
Date first made open access: | 18 July 2018 |
Save or Share this output
Export: | |
Look up in GoogleScholar |