Cookies

We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.


Durham Research Online
You are in:

The Pan-STARRS1 medium-deep survey : star formation quenching in group and cluster environments.

Jian, Hung-Yu and Lin, Lihwai and Lin, Kai-Yang and Foucaud, Sebastien and Chen, Chin-Wei and Chiueh, Tzihong and Bower, R. G. and Cole, Shaun and Chen, Wen-Ping and Burgett, W. S. and Draper, P. W. and Flewelling, H. and Huber, M. E. and Kaiser, N. and Kudritzki, R.-P. and Magnier, E. A. and Metcalfe, N. and Wainscoat, R. J. and Waters, C. (2017) 'The Pan-STARRS1 medium-deep survey : star formation quenching in group and cluster environments.', The astrophysical journal., 845 (1). p. 74.

Abstract

We make use of a catalog of 1600 Pan-STARRS1 groups produced by the probability friends-of-friends algorithm to explore how the galaxy properties, i.e., the specific star formation rate (SSFR) and quiescent fraction, depend on stellar mass and group-centric radius. The work is the extension of Lin et al. In this work, powered by a stacking technique plus a background subtraction for contamination removal, a finer correction and more precise results are obtained than in our previous work. We find that while the quiescent fraction increases with decreasing group-centric radius, the median SSFRs of star-forming galaxies in groups at fixed stellar mass drop slightly from the field toward the group center. This suggests that the main quenching process in groups is likely a fast mechanism. On the other hand, a reduction in SSFRs by ~0.2 dex is seen inside clusters as opposed to the field galaxies. If the reduction is attributed to the slow quenching effect, the slow quenching process acts dominantly in clusters. In addition, we also examine the density–color relation, where the density is defined by using a sixth-nearest-neighbor approach. Comparing the quiescent fractions contributed from the density and radial effect, we find that the density effect dominates the massive group or cluster galaxies, and the radial effect becomes more effective in less massive galaxies. The results support mergers and/or starvation as the main quenching mechanisms in the group environment, while harassment and/or starvation dominate in clusters.

Item Type:Article
Full text:(VoR) Version of Record
Download PDF
(1642Kb)
Status:Peer-reviewed
Publisher Web site:https://doi.org/10.3847/1538-4357/aa7de2
Publisher statement:© 2017. The American Astronomical Society
Date accepted:03 July 2017
Date deposited:01 September 2017
Date of first online publication:11 August 2017
Date first made open access:01 September 2017

Save or Share this output

Export:
Export
Look up in GoogleScholar