Crystal structure and magnetic modulation in β-Ce₂O₂FeSe₂

Chun-Hai Wang, 1, 2 C. M. Ainsworth, 1 S. D. Champion, 1 G. A. Stewart, 3 M. C. Worsdale, 4 T. Lancaster, 4 S. J. Blundell, 5 Helen E. A. Brand, 6 and John S. O. Evans 1

1Department of Chemistry, Durham University, University Science Site, South Road, Durham, DH1 3LE, United Kingdom
2School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
3School of Physical, Environmental & Mathematical Sciences, UNSW Canberra, Australian Defence Force Academy, PO Box 7916, Canberra, BC 2610, Australia
4Department of Physics, Durham University, University Science Site, South Road, Durham, DH1 3LE, United Kingdom
5Department of Physics, Oxford University, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU, United Kingdom
6Australian Synchrotron, 800 Blackburn Rd., Clayton, Victoria, 3168, Australia

(Received 24 April 2017; published 11 August 2017)

We report a combination of x-ray and neutron diffraction studies, Mössbauer spectroscopy, and muon spin relaxation (μSR) measurements to probe the structure and magnetic properties of the semiconducting β-Ce₂O₂FeSe₂ oxychalcogenide. We report a structural description in space group Pnaă2₁ which is consistent with diffraction data and second harmonic generation measurements and reveal an order-disorder transition on one Fe site at T_D0 ≈ 330 K. Susceptibility measurements, Mössbauer, and μSR reveal antiferromagnetic ordering below T_N = 86 K and more complex short range order above this temperature. 12 K neutron diffraction data reveal a modulated magnetic structure with q = 0.444bN∗.

DOI: 10.1103/PhysRevMaterials.1.034403

I. INTRODUCTION

There has been significant recent research on oxychalcogenide materials due to their important electronic and magnetic properties and the area has been recently reviewed [1, 2]. One important family of compounds is those with general composition Ln₂O₂MSe₂ (Ln = La, Ce; M = Mn, Fe, Zn, Cd) [3–11] and closely related composition such as La₂O₂Cu₂Se₂ [12]. These materials are semiconductors with band gaps varying from ~0.3 to ~3.3 eV [1, 3–5, 8, 10, 11, 13–16]. For example, layered La₂O₂CdSe₂ was reported as a wide-gap (3.3 eV) semiconductor and investigated as an optoelectronic device component [14, 15], β-La₂O₂FeSe₂ and β-La₂O₂MnSe₂ are semiconductors with band gaps of 0.7 and 1.6 eV, respectively [3]. These mixed-anion compounds have relatively flexible atomic interactions and can adopt different structure types (polymorphs). Three basic structure types have been observed for Ln₂O₂MSe₂ compositions to date. Most adopt a layered structure (α phase) which can be modulated in either a commensurate or incommensurate manner within individual layers to accommodate different transition metal arrangements [8, 10, 11]. There are also two nonlayered structures reported (orthorhombic β phase and monoclinic Pb₂HgCl₂-type γ phase) [3, 13]. All three structures can be adopted by Ce₂O₂FeSe₂ by modifying the synthesis conditions [4, 13]. McCabe et al. reported the nuclear and magnetic structure of bulk layered α-Ce₂O₂FeSe₂ [4, 6]; the space group of the nuclear structure is Imaă (72). Nitsche et al. observed all three polymorphs (which they label as αL₁, αA₁ and mC-Ce₂O₂FeSe₂ according to their symmetry) in single crystals grown at different temperatures [13]. The space groups of β- and γ-Ce₂O₂FeSe₂ they reported were Amam (No. 63) and C2/m (No. 12), respectively. We have investigated the bulk and single crystal forms of β-Ce₂O₂FeSe₂ and found that the diffraction patterns we observed disagree with the reflection conditions of space group Amam. We propose a different room temperature structural model for β-Ce₂O₂FeSe₂ based on our x-ray and neutron diffraction data and reveal an order-disorder transition involving one Fe site in the material at T_D0 ≈ 330 K. Low temperature neutron diffraction, Mössbauer spectroscopy, and muon spin relaxation spectra all show that β-Ce₂O₂FeSe₂ orders antiferromagnetically below T_N = 86 K. We report the modulated magnetic structure and probe short range ordering above T_N.

II. EXPERIMENTAL DETAILS

Synthesis: A polycrystalline sample of β-Ce₂O₂FeSe₂ was prepared by solid state reaction. CeO₂ (99.99%, Alfa Aesar, heated at 1000 °C before use), Se (99.999%, Alfa Aesar), and Fe (99.9%, Sigma-Aldrich) were weighed and ground in an agate mortar and pestle in a stoichiometric ratio. The well-mixed powders were placed in an alumina crucible and sealed in a silica tube with a second alumina crucible filled with Ti powder (99.5%, Alfa Aesar, 5% molar excess) acting as an oxygen getter (forming TiO₂). The tubes were evacuated to ~10⁻² mbar before sealing. The sealed tubes were heated slowly to 600 °C and held for 24 h, then to 1000 °C and held for 48 h. After cooling, the samples were ground, resealed in silica tubes, and reheated at 1000 °C for 48 h. An essentially single phase (>99%) product was obtained.

β-Ce₂O₂FeSe₂ single crystals were prepared from stoichiometric amounts of CeO₂, Fe, and Se, in a KCl flux (99%, Alfa Aesar, heated to 150 °C before use). The molar amount of KCl was ~10 times that of Ce₂O₂FeSe₂. The well-ground mixture (~0.8 g total) was placed into an alumina crucible and sealed with a second alumina crucible filled with Ti (5% molar excess) powder. The tube was then heated to 600 °C at 60 °C/h, held for 24 h; heated to 950 °C at 60 °C/h, held for 96 h; ramped to 850 °C at 60 °C/h and held for 96 h; cooled to 600 °C at 2 °C/h; and finally cooled to room temperature at 100 °C/h. The reacted mixture was washed with water to remove KCl and dried with acetone. Black blade or platelike single crystals were obtained.
Powder diffraction: Laboratory powder x-ray diffraction data for β-Ce$_2$O$_2$FeSe$_2$ were collected at room temperature (RT) from 8° to 140° 2θ in reflection mode using a Bruker D8 powder diffractometer on samples sprinkled on zero-background Si wafers. Cu Kα radiation (tube condition: 50 kV, 40 mA), variable divergence slits, and a Lynxeye Si strip position detector (PSD) were used. For Rietveld-quality data a scan step of 0.02° and scan time of \sim38 h were used. Variable temperature PXRD data (~2 K intervals, 20 min scans) on Ce$_2$O$_2$FeSe$_2$ were recorded between 13 and 300 K (on cooling and warming) with temperature controlled by an Oxford Cryosystems Cryostream 700 compact. Synchrotron PXRD data were collected on the powder diffraction beamline at the Australian synchrotron. The sample was loaded in a 0.7 mm capillary with temperature controlled by an Oxford Cryosystems Cryostream 700 compact. Synchrotron PXRD data were collected on the powder diffraction beamline at the Australian synchrotron. The sample was loaded in a 0.7 mm capillary with temperature controlled by an Oxford Cryosystems Cryostream 700 compact. Synchrotron PXRD data were collected on the powder diffraction beamline at the Australian synchrotron. The sample was loaded in a 0.7 mm capillary with temperature controlled by an Oxford Cryosystems Cryostream 700 compact. Synchrotron PXRD data were collected on the powder diffraction beamline at the Australian synchrotron. The sample was loaded in a 0.7 mm capillary with temperature controlled by an Oxford Cryosystems Cryostream 700 compact. Synchrotron PXRD data were collected on the powder diffraction beamline at the Australian synchrotron. The sample was loaded in a 0.7 mm capillary with temperature controlled by an Oxford Cryosystems Cryostream 700 compact. Synchrotron PXRD data were collected on the powder diffraction beamline at the Australian synchrotron. The sample was loaded in a 0.7 mm capillary with temperature controlled by an Oxford Cryosystems Cryostream 700 compact. Synchrotron PXRD data were collected on the powder diffraction beamline at the Australian synchrotron. The sample was loaded in a 0.7 mm capillary with temperature controlled by an Oxford Cryosystems Cryostream 700 compact. Synchrotron PXRD data were collected on the powder diffraction beamline at the Australian synchrotron. The sample was loaded in a 0.7 mm capillary with temperature controlled by an Oxford Cryosystems Cryostream 700 compact.
TABLE I. Structure parameters of \(\beta\text{-Ce}_2\text{O}_2\text{FeSe}_2 \) from combined refinement using PXRD and PND data (\(\text{Pnma} \)) model.

<table>
<thead>
<tr>
<th>Space group</th>
<th>(\text{Pnma}) (62)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) (Å)</td>
<td>17.18613(2)</td>
</tr>
<tr>
<td>(b) (Å)</td>
<td>3.962980(5)</td>
</tr>
<tr>
<td>(c) (Å)</td>
<td>16.28509(2)</td>
</tr>
<tr>
<td>(V) (Å(^3))</td>
<td>1109.150(3)</td>
</tr>
<tr>
<td>(d_{\text{hect}}) (g/cm(^3))</td>
<td>6.29987(2)</td>
</tr>
<tr>
<td>(R_{\text{wp}}) (%)</td>
<td>2.03 (overall), 3.69 (lab x ray), 3.06 (synchrotron x ray), 3.68 (PND-bank1), 2.81 (PND-bank2), 1.83 (PND-bank3), 1.51 (PND-bank4), 1.43 (PND-bank5), 1.69 (PND-bank6).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Site</th>
<th>(x)</th>
<th>(y)</th>
<th>(z)</th>
<th>Occupancy</th>
<th>(B_{\text{eq}}) (Å(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ce1</td>
<td>4c</td>
<td>0.09063(8)</td>
<td>0.25</td>
<td>-0.01878(10)</td>
<td>1.004(18)</td>
</tr>
<tr>
<td>Ce2</td>
<td>4c</td>
<td>0.40747(9)</td>
<td>0.25</td>
<td>-0.02259(10)</td>
<td>1.004(18)</td>
</tr>
<tr>
<td>Ce3</td>
<td>4c</td>
<td>0.08679(7)</td>
<td>0.25</td>
<td>0.67399(12)</td>
<td>1.004(18)</td>
</tr>
<tr>
<td>Ce4</td>
<td>4c</td>
<td>0.41591(7)</td>
<td>0.25</td>
<td>0.67681(12)</td>
<td>1.004(18)</td>
</tr>
<tr>
<td>Se1</td>
<td>4c</td>
<td>0.24979(10)</td>
<td>0.25</td>
<td>0.48740(3)</td>
<td>1.004(18)</td>
</tr>
<tr>
<td>Se2</td>
<td>4c</td>
<td>0.06499(6)</td>
<td>0.25</td>
<td>0.32808(9)</td>
<td>1.004(18)</td>
</tr>
<tr>
<td>Se3</td>
<td>4c</td>
<td>0.42634(6)</td>
<td>0.25</td>
<td>0.32959(10)</td>
<td>1.004(18)</td>
</tr>
<tr>
<td>Se4</td>
<td>4c</td>
<td>0.25077(9)</td>
<td>0.25</td>
<td>0.74886(3)</td>
<td>1.004(18)</td>
</tr>
<tr>
<td>O1</td>
<td>4c</td>
<td>0.13800(9)</td>
<td>0.25</td>
<td>0.12183(12)</td>
<td>1.004(18)</td>
</tr>
<tr>
<td>O2</td>
<td>4c</td>
<td>0.35992(9)</td>
<td>0.25</td>
<td>0.11954(11)</td>
<td>1.004(18)</td>
</tr>
<tr>
<td>O3</td>
<td>4c</td>
<td>0.45455(11)</td>
<td>0.25</td>
<td>0.54074(13)</td>
<td>1.004(18)</td>
</tr>
<tr>
<td>O4</td>
<td>4c</td>
<td>0.04588(11)</td>
<td>0.25</td>
<td>0.53961(13)</td>
<td>1.004(18)</td>
</tr>
<tr>
<td>Fe1</td>
<td>4c</td>
<td>0.24960(9)</td>
<td>0.25</td>
<td>0.11788(3)</td>
<td>1.004(18)</td>
</tr>
<tr>
<td>Fe2</td>
<td>4c</td>
<td>0.27628(10)</td>
<td>0.25</td>
<td>0.33753(9)</td>
<td>0.788(3)</td>
</tr>
<tr>
<td>Fe3</td>
<td>4c</td>
<td>0.2366(3)</td>
<td>0.25</td>
<td>0.3404(3)</td>
<td>0.212(3)</td>
</tr>
</tbody>
</table>

adopts a primitive space group. By analogy to the similar systems \(\beta\text{-La}_2\text{O}_2\text{MnSe}_2 \) and \(\beta\text{-La}_2\text{O}_2\text{FeSe}_2 \) [3, 13], the symmetry of \(\beta\text{-Ce}_2\text{O}_2\text{FeSe}_2 \) could be \(\text{Pnma} \) (No. 62) or \(\text{Pna} \) (No. 33; \(\text{Pn} \) in same cell setting as \(\text{Pnma} \)). Room temperature second-harmonic generation measurements were performed on a modified Kurtz-nonlinear optical (NLO) system using a previously published methodology [22]. \(\beta\text{-Ce}_2\text{O}_2\text{FeSe}_2 \) gave a comparable SHG signal to quartz (\(\beta \)) indicating that the sample is noncentrosymmetric. The positive SHG result therefore suggests the noncentrosymmetric \(\text{Pnna} \) group.

Structure refinement in the two space groups gave no significant difference in fit between the models (\(R_{\text{wp}} = 6.94\% \) and 6.90%, respectively). Note that the \(b \) and \(c \) axis in the two models are swapped to keep standard space group choices. Combined refinement of laboratory and synchrotron x-ray and neutron powder data were conducted with cell parameters, atomic coordinates, site occupancies of Fe2 and Fe3, and isotropic atomic displacement parameters (ADP) refined. There is again only a marginal improvement in fit using \(\text{Pnna} \), with the overall \(R_{\text{wp}} \) changed from 2.03% in \(\text{Pnma} \) (30 fractional atomic coordinates refined) model to 2.02% in \(\text{Pnna} \) (44 fractional atomic coordinates). Structure parameters of the \(\text{Pnma} \) model are given in Table I and the \(\text{Pnna} \) model in the SM [24]; full details can be found in the SM CIF files.

The refined structure is shown in Fig. 1 and contains building blocks which are familiar from other oxychalogenide structures. Oxide ions are located in fluoritelike infinite ribbons built from four \(\text{O} \)\(\text{Ce}_4 \) or \(\text{O} \)\(\text{Ce}_3\text{Fe} \) edge-shared tetrahedra which run parallel to the \(b \) axis of the \(\text{Pnma} \) cell or the \(c \) axis of the \(\text{Pnna} \) cell (for comparison with the magnetic structure we will use the \(\text{Pnma} \) cell from here onwards). Each Ce site has four short bonds to the tetrahedrally coordinated \(\text{O} \) atoms and four longer bonds to \(\text{Se} \) in a distorted square antiprismatic arrangement common to many mixed anion materials. The ribbon edges are terminated by the Fe1 site, the coordination environment of which is completed by four \(\text{Se} \) ions to give infinite chains of edge sharing \(\text{Fe} \)\(\text{O} \)\(\text{Se} \) octahedra which also run parallel to the \(\text{Pnma} \) \(b \) axis. Fe2 sits close to a site that would be trigonally prismaticly coordinated by five \(\text{Se} \) atoms, however this site is better considered as two closely separated face-sharing tetrahedral sites (Fe2 and Fe3). At \(T > 300 \text{ K} \) the Fe is randomly disordered over these two sites, whereas at room temperature there is partial or local ordering to a \(\sim 0.8 : 0.2 \) ratio of Fe2:Fe3. The Fe2 tetrahedra form infinite corner sharing chains parallel to \(b \). There are some analogies to the structures of LnOFeAs-derived superconductors and LnOMSe2 materials which have extended 2D layers of edge-shared \(\text{O} \)\(\text{Ln} \) tetrahedra separated by \(\text{FeAs}_4 \) or \(\text{FeSe}_4 \) tetrahedral layers [8]. In \(\beta\text{-Ce}_2\text{O}_2\text{FeSe}_2 \) we can consider corrugated oxide-containing layers in the \(ab \) plane, though these layers contain both Ln and Fe; these layers are separated by corrugated Fe\(\text{Se} \) layers.

B. Structural phase transition of \(\beta\text{-Ce}_2\text{O}_2\text{FeSe}_2 \)

Variable temperature powder diffraction measurements were recorded for \(\beta\text{-Ce}_2\text{O}_2\text{FeSe}_2 \) to investigate possible phase transition beyond the magnetic ordering discussed below. Approximately 60 data sets recorded between 12 and 300 K were analyzed and showed smooth and reversible behavior on cooling and warming. Fractional cell parameter changes (\(a, b, c \),...
c, and volume) are plotted in Fig. 2, original values are given in the SM [24], b, c, and volume V increase as expected on warming but a shows a local maximum followed by contraction at T ≈ 230 K. This indicates a gradual phase transition, which, by analogy with related materials, is caused by ordering of Fe between Fe2 and Fe3 sites [3]. Lower quality diffraction data were recorded between 100 and 450 K and showed the phase transition is complete by ∼330 K. The room temperature cell parameters are consistent with the high degree of Fe2 ordering refined from room temperature single crystal diffraction data, and its evolution on cooling suggests full ordering at low temperature. Further details will be discussed in the following sections. The low temperature cell parameters can be described by a single term Einstein-type expression [25],

\[\ln \left(\frac{x}{x_0} \right) = \frac{C \theta}{\exp(\theta/T) - 1} - 1, \]

where T is temperature, x and x₀ are the cell parameters at T and 0 K, C a constant, and θ is the empirical “Einstein” temperature. The fitted 0 K cell parameters are a₀ = 17.1738(9) Å (12–140 K), b₀ = 3.9542(3) Å, c₀ = 16.2290(7) Å, V₀ = 1102.12(1) Å³, and constants are Cₐ = 1.0(1) × 10⁻⁵ K⁻¹ (12–140 K), C₉ = 0.8(1) × 10⁻⁵ K⁻¹, Cₐ = 1.09(8) × 10⁻⁵ K⁻¹, Cᵥ = 2.80(2) × 10⁻⁵ K⁻¹ using a single Einstein temperature of 154(2) K. The fitted curves are shown in each figure.

C. 12 K Magnetic structure of β-Ce₂O₂FeSe₂

Extra peaks were observed in the 12 K PND data of β-Ce₂O₂FeSe₂ which arise from magnetic ordering and cannot be indexed using the nuclear unit cell. These peaks are most obvious in PND-bank3, which is plotted in Fig. 3. The magnetic peaks can be indexed using the incommensurate magnetic ordering vector q = 0.444(1) bₙ⁺ based on an orthorhombic nuclear cell with aₙ = 17.607(3) Å, bₙ = 3.9624(7) Å, cₙ = 16.266(3) Å. The magnetic structure can therefore be described using a (3 + 1)D superspace model.

FIG. 1. β-Ce₂O₂FeSe₂ structure viewed down either the b axis of Pnma or the c axis of the Pn2₁ cell. Middle views emphasize the chains of iron-centered polyhedra present and the relationship between the Fe2/Fe3 trigonal prismatic/paired tetrahedral sites. Right-hand view shows Fe chains and moments (red arrows) from the best magnetic model.

FIG. 2. Cell parameter changes in β-Ce₂O₂FeSe₂ as a function of temperature. The solid red curves were fitted based on Eq. (2). Closed data points collected in Phenix cryostat in Bragg-Brentano mode; open data points using a capillary set up and Oxford cryostream.
However, as \(q \approx \frac{4}{9} b_N^* \) we can also use a supercell approximation using a cell nine times that of the nuclear cell in the \(b \) direction. As discussed below, there are two magnetic modulation waves, which make the supercell approach more straightforward.

To simplify the development of a model for the magnetic structure we made four initial assumptions: (1) As the structural difference between the \(Pnma \) and noncentrosymmetric \(Pn2_1 \) (\(Pn2_1a \)) models are minimal, we analyze and discuss the magnetic structure based on the centrosymmetric \(Pnma \) model with nuclear coordinates fixed at their room temperature values. (2) Since the magnetic diffraction is dominated by Fe\(^{2+} \) moments, we only considered the Fe\(^{2+} \) contributions during the development of different models. (3) Since the Fe2 site is close to fully occupied at room temperature and orders further on cooling (Fig. 2 and SM [24]), we assumed full occupancy in our initial analysis; subsequent tests showed no improvement to fits on including minor Fe\(^{3+} \) occupancy. (4) Ce contributions to the magnetic scattering were considered only for the best Fe-based models.

Based on these assumptions, magnetic structural models were derived using irreps analysis in the ISODISTORT suite. If there is one magnetic ordering vector \(m\Delta (0 4/9 0) \) then there are four irreps possibilities: \(m\Delta_1 \), \(m\Delta_2 \), \(m\Delta_3 \), and \(m\Delta_4 \). This gives 12 possible magnetic structures depending on the phase shift of the magnetic modulation waves (origin shift). Figure 4 shows Rietveld fits of two of the best models with only Fe\(^{2+} \) magnetic ordering (12 parameters possible for each

![Figure 3](image1)

FIG. 3. PND data (bank 3) of \(\beta\)-Ce\(_2\)O\(_2\)FeSe\(_2\) at 12 K. Circles: experimental data; red solid line: simulated from nuclear model; peaks marked by stars come from the magnetic ordering.

![Figure 4](image2)

FIG. 4. Rietveld fits to PND-bank 3 data of \(\beta\)-Ce\(_2\)O\(_2\)FeSe\(_2\) at 12 K using \(m\Delta_3 \) and \(m\Delta_4 \) models (shown to the right of each curve) which correspond to space groups \(Pn2_1 \) and \(Pn2_1a \). Circles: experiment data; red solid line: calculated; only Fe\(^{2+} \) moment considered. \(R_{wp}: 2.36\% \) for \(m\Delta_3 \) and 2.45\% for \(m\Delta_4 \).
TABLE II. Summary of Rietveld refinement models. Gof is the standard Rietveld goodness of fit.

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Magnetic parameters</th>
<th>R_{wp} (all banks) (%)</th>
<th>R_{wp} (bank 3) (%)</th>
<th>gof</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No magnetism</td>
<td>0</td>
<td>6.05</td>
<td>8.05</td>
<td>6.54</td>
</tr>
<tr>
<td>2</td>
<td>Fe $m\Delta_3$</td>
<td>12 \times Fe</td>
<td>2.52</td>
<td>2.37</td>
<td>2.71</td>
</tr>
<tr>
<td>3</td>
<td>Fe $m\Delta_4$</td>
<td>12 \times Fe</td>
<td>2.50</td>
<td>2.45</td>
<td>2.69</td>
</tr>
<tr>
<td>4</td>
<td>Fe (equated moments) $m\Delta_3 + m\Delta_4$</td>
<td>2 \times Fe</td>
<td>2.29</td>
<td>2.15</td>
<td>2.47</td>
</tr>
<tr>
<td>5</td>
<td>Fe + Ce $m\Delta_3 + m\Delta_4$</td>
<td>2 \times Fe + 8 \times Ce</td>
<td>2.12</td>
<td>1.80</td>
<td>2.30</td>
</tr>
</tbody>
</table>

model, though not all are necessary to fit the data) considered: $m\Delta_3$ (33.147 $Pn\alpha'2_1'$) and $m\Delta_4$ (33.146 $Pn\alpha'2_1'$); these gave similar R_{wp} factors (2.52% vs 2.50% for all data compared to 6.05% with no magnetic contribution, Table II models 2 and 3). Both models give a reasonable description of the magnetic reflections. There are three types of modes for $m\Delta_3$ or $m\Delta_4$: A', A''_1, and A''_2. Nonzero amplitudes of A' modes give Fe$^{2+}$ moments parallel to the b_N axis (or the Fe chains in Fig. 4) while the A''_1 and A''_2 modes give moments parallel to a_N or c_N. In the $m\Delta_3$ model the dominant magnetic ordering is due to $m\Delta_3-A''_2$ modes with moments parallel to the c_N axis, and in the $m\Delta_4$ model due to $m\Delta_4-A''_1$ modes with moments parallel to the a_N axis. However, if we compare the relative intensities of peaks between 3.3 and 6.3 Å, we find that they are somewhat complementarity between $m\Delta_3$ and $m\Delta_4$ models (peaks overcalculated in one model are undercalculated in the other and vice versa). This suggests that the magnetic structure might be a two-vector one ($m\Delta_3 + m\Delta_4$), containing contributions from both $m\Delta_3$ and $m\Delta_4$ magnetic ordering. Similar complementary is also observed in the other data banks.

Using two-vector $m\Delta_3 + m\Delta_4$ models, a better fit can be achieved using only two moment-defining parameters ($m\Delta_3-A''_2 + m\Delta_4-A''_1$ with Fe1, Fe2 having the same $m\Delta_3-A''_2$ or $m\Delta_4-A''_1$ amplitude) than using 12 in one-vector models ($m\Delta_3$ or $m\Delta_4$). With this model the R_{wp} factor decreased to 2.29% for all data and 2.15% for PND-bank3 (Table II, model 4). These refinements confirmed that the Fe$^{2+}$ moments are mainly along the a_Nc_N plane. A further improvement in fit could be achieved by allowing Ce$^{3+}$ moments to refine (refined to be mainly along b_N axis, see the CIF files in the SM [24] and the discussion below), with R_{wp} (overall) = 2.12% and R_{wp} (PND-bank3) = 1.80% (Table II, model 5). The observation of Ce ordering is consistent with several other Ce-Fe oxyselenides, where ordered Ce moments are required to fit the diffraction data and persist to surprisingly high temperatures [4,6,7,11]. An excellent fit to the PND data is achieved using this type of model, and the refined profiles for

![Rietveld-fitted PND data of β-Ce$_2$O$_2$FeSe$_2$ at 12 K using $m\Delta_3 + m\Delta_4$ models considering both Fe$^{2+}$ and Ce$^{3+}$ moments. Circles: experiment data; red solid line: calculated; gray line: difference between calculated and experimental curve. R_{wp} (bank 1): 2.41%; R_{wp} (bank 2): 2.11%; R_{wp} (bank 3): 1.78%; R_{wp} (bank 4): 2.36%; R_{wp} (bank 5): 2.34%; R_{wp} (bank 6): 1.51%.](image)
the moment of Ce$^3^+$ is well described by the magnetic structure and labels $c1$–$c4$ define the chains which derive from the same reference nuclear Fe site.

all banks are shown in Fig. 5. The magnetic structural models can be found in the SM CIF files [24]. If we consider the phase shift between $m\Delta3$ and $m\Delta4$ ordering, there are two coupling choices (phase choices with phase difference 0 or $\pi/2$). There are six combinations between A''_1 and A''_2 for $m\Delta3$ and $m\Delta4$ ordering for each choice. The way in which these determine the moments on the Fe1 chains is shown in the SM [24]. The magnetic scattering is well described by the $m\Delta3-A''_1 + m\Delta4-A''_2$ model with either phase choice, which gave R_{wp} values that differ by less than 0.01%. As such we cannot distinguish them from our refinements even though they are physically different. The refined magnetic moments of Fe$^{2+}$ for the two models are shown in Fig. 6, where we introduce labels $c1$ to $c4$ to describe different chains derived from a single Fe1 or Fe2 parent site. In choice (a), the magnetic moments on the Fe$^{2+}$ chains form a planar amplitude modulated wave (spin density wave) with maximum moment $\sim 5.19 \mu_B$. However, in choice (b), the magnetic moment of Fe$^{2+}$ chains is mainly a direction modulated wave (helical proper screw) with approximately constant amplitude (moment from 3.30 to 4.04 μ_B along the chain). The refined moment from the choice (b) model is as expected for a high spin Fe$^{2+}$. The refined mode amplitudes of $m\Delta3-A'_1$ and $m\Delta4-A'_2$ [14(1):17(1)] are similar but not identical, which means a helical type ordering accompanied by a small modulation in spin amplitude. Along each Fe$^{2+}$ chain, the moment shows a local antiferromagnetic (AFM) like arrangement with the amplitude or direction modulated. Neighboring Fe1 and Fe2 chains (Fe1c1-Fe2c1, Fe1c2-Fe2c2, Fe1c3-Fe2c3, and Fe1c4-Fe2c4) are aligned in a ferromagnetic (FM) sense, whereas Fe$^{2+}$ chains $c1$-$c4$, $c2$-$c3$ are aligned AFM. For the modulation, Fe$^{2+}$ chains $c1$-$c4$ and $c2$-$c3$ have the same phase but there is antiphase modulation between $c1$ ($c4$) and $c2$ ($c3$) chains.

Although the Ce$^{3+}$ contribution to the magnetic scattering is weak, the data suggest that Ce$^{3+}$ magnetic moments are aligned parallel to the Fe$^{2+}$ chains (b_N axis, $m\Delta3-A'$ + $m\Delta4-A'$) rather than along other axes ($m\Delta3-A''$ + $m\Delta4-A''$) (overall R_{wp} values of 2.12% and 2.29%, respectively). Thus, the moment of Ce$^{3+}$ is described by the mode $m\Delta3-A'$ and $m\Delta4-A'$ (eight parameters to describe moments on the four Ce$^{3+}$ chains). The refined magnetic models (a) and (b) are shown in Fig. 7. In both models, the moment of Ce$^{3+}$ shows the same phase shift as adjacent Fe$^{2+}$ which is consistent with Ce$^{3+}$ magnetic ordering being induced by Fe$^{2+}$. The relation between local Ce$^{3+}$ and Fe$^{2+}$ moments is counterintuitive and shows a “monopolelike” behavior. A similar effect has been observed in Ce$_2$O$_2$MnSe$_2$ [11].

D. Magnetic properties of β-Ce$_2$O$_2$FeSe$_2$

The temperature dependence of ZFC and FC molar magnetic susceptibilities (χ_{mol}) of β-Ce$_2$O$_2$FeSe$_2$ are shown in Fig. 8 along with the field dependence of moment at selected temperatures. For β-Ce$_2$O$_2$FeSe$_2$ the observed susceptibility can be reasonably approximated by the sum of contributions from Fe$^{2+}$ sites which order antiferromagnetically on cooling superimposed on a Curie-Weiss contribution from Ce$^{3+}$ which orders at a much lower temperature. This is consistent with our neutron and other observations. The Ce$^{3+}$ contribution makes estimation of T_N(Fe) from the magnetic data difficult, though we observe a sharp maximum around 80 K in $d\chi/T/dT$ and a broader maximum around 145 K. The overall behavior is consistent with that of the (diamagnetic) La analog β-La$_2$O$_2$FeSe$_2$, which shows non-Curie-Weiss behavior with a broad hump in susceptibility around 91 K which coincides with the loss of magnetic neutron scattering at the Néel temperature T_N.

E. Mössbauer spectra of β-Ce$_2$O$_2$FeSe$_2$

57Fe Mössbauer spectroscopy is a powerful probe of the magnetic properties of Fe-containing materials, and has been used to give important insight on various materials in which Fe orders incommensurately at low temperature. These include multiferroics, where cycloid ordering often emerges from collinear sinusoidal ordering (e.g., FeVO$_4$...
Coupled with the sharp maximum observed for $d\chi /dT$ near 80 K and $\mu^+ \text{SR}$ data discussed below, this confirms that the Fe sublattices are magnetically ordered below $T_N(\text{Fe}) \approx 85–90$ K.

Values of the isomer shift δ and quadrupole splitting ΔE_Q, derived by fitting to the paramagnetic spectra ($T > 90$ K), are presented in Fig. 10 as a function of temperature. Their room temperature values are also included in Table III. The isomer shifts for the two doublets are similar and typical for high spin Fe$^{2+}$ ions in either octahedral or tetrahedral environments [35], but site assignment is made possible via their distinct quadrupole splitting behavior.

![Diagram](image-url)
The blue theory curve is modeled on splitting of the quadrupole splitting of the octahedral Fe1 site. The simple trigonally distorted tetrahedral site model outlined by Gerard et al. [44,45] is relevant to our experimental observations. In that model, the trigonal distortion modifies the expansion coefficients of the degenerate, tetrahedral, and ground state doublet and splits the excited \(t_2 \) triplet into a singlet and a doublet. The modified ground state doublet coefficients lead to a temperature-independent \(V_z \) contribution that depends on \(\delta/\Delta \) where \(\Delta \) is the overall tetrahedral splitting energy and \(\Delta \) is the trigonal distortion splitting of the upper state. Typically, \(\delta \ll \Delta \), so that this model offers qualitative support for the small, temperature-independent, quadrupole splitting observed here for the Fe2 site.

Below the \(T_K \approx 85 \) K magnetic transition, the 57Fe-Mössbauer spectra were initially fitted as a superposition of four magnetically split sextets for each of the Fe1 and Fe2 sites. This approach was prompted by the incommensurate magnetic vector \(q = 0.444(1) \) in the magnetic hyperfine field \(B_{hf} \). For each site, the isomer shift \(\delta \) and the quadrupole splitting value \(1/2\epsilon QV_z^\ast \) were fixed at values extrapolated from the high-temperature, paramagnetic spectra. The principal \(z \) axis of the electric-field gradient was assumed to align with the \(aN \) axis and the asymmetry parameter \(\eta \) was fixed at zero for the Fe1 site but allowed to vary for the less symmetric Fe2 site. Only the magnitudes and orientations (the polar angle \(\theta \) with respect to the principal \(z \) axis) of the individual \(B_{hf} \) were allowed to vary. Within each sextet, the Lorentzian linewidths were set at 0.3 mm/s and the relative line intensities were fixed at 3:2:1:1:2:3 as appropriate for random orientation of the specimen crystallites. The results

\[
\Delta E_Q(T) = \Delta E_Q(\text{latt}) + \Delta E_0(1 - e^{-\delta_1 k_B T})/(1 + 2e^{-\delta_1 k_B T})
\]

with \(\Delta E_0 = \frac{1}{2\epsilon^2 Q} \frac{4(1 - R)(r^{-3})}{4\pi\varepsilon_0} \),

(3)

where \(\delta_1 \) is the splitting of the \(t_2g \) level, and \(\Delta E_0 \approx 3.8 \text{ mm/s} \). (de Grave et al. [38]) is the valence contribution to the quadrupole splitting at \(T \to 0 \) K (i.e., due to the \(d_{xz} \) singlet), and \(\Delta E_0(\text{latt}) \) is the contribution due to the charges on the surrounding lattice. Point charge model summations were employed to estimate \(\Delta E_0(\text{latt}) \approx -1.8 \text{ mm/s} \), which is of opposite sign to the valence contribution. The experimental data were reasonably well described (fitted blue line in Fig. 10) using \(\Delta E_0(\text{latt}) = -1.4 \text{ mm/s} \) at \(T = 850 \text{ K} \).

The second doublet (green fitted subspectra in Fig. 9) is then assigned to the Fe2 tetrahedral site. In this case, \(\Delta E_0 \) is substantially smaller and essentially temperature independent. The room temperature combination of a high isomer shift (\(\delta \approx 0.8 \text{ mm/s} \)) and low quadrupole splitting (\(\Delta E_0 \approx 0.35 \text{ mm/s} \)) is seemingly rare in the literature. However, similar results have been reported for Fe2+ located at the tetrahedral sites of binary oxides and chalcogenides. Examples include \(\delta = 0.84(3) \text{ mm/s} \), \(\Delta E_0 = 0.35(3) \text{ mm/s} \) for impurity Fe2+ implanted in single crystal, hexagonal ZnO [39], and of \(\delta \approx 0.4-0.6 \text{ mm/s} \) at \(T = 0.2-0.3 \text{ mm/s} \) with relatively small temperature dependence for FeSe [40–42], FeTe [41,42], and Fe1–\(x \)Mn\(x \)Se0.85 [43]. In the case of the chalcogenides, the slightly smaller isomer shift value has led some authors to conclude that the Fe2+ is in its low spin \(S = 0 \) state. However, this is unlikely for the tetrahedral Fe2 site of \(\beta\text{-Ce}_2\text{O}_2\text{FeSe}_2 \) given that the neutron diffraction analysis assigns it to either a sinusoidal or spiral magnetic structure with a moment amplitude close to \(\mu = g_3 S = 2 \times 2 = 4 \mu_B \).

The simple trigonally distorted tetrahedral site model outlined by Gerard et al. [44,45] is relevant to our experimental observations. In that model, the trigonal distortion modifies the expansion coefficients of the degenerate, tetrahedral, and ground state doublet and splits the excited \(t_2 \) triplet into a singlet and a doublet. The modified ground state doublet coefficients lead to a temperature-independent \(V_z \) contribution that depends on \(\delta/\Delta \) where \(\Delta \) is the overall tetrahedral splitting energy and \(\delta \) is the trigonal distortion splitting of the upper state. Typically, \(\delta \ll \Delta \), so that this model offers qualitative support for the small, temperature-independent, quadrupole splitting observed here for the Fe2 site.

Below the \(T_K \approx 85 \) K magnetic transition, the 57Fe-Mössbauer spectra were initially fitted as a superposition of four magnetically split sextets for each of the Fe1 and Fe2 sites. This approach was prompted by the incommensurate magnetic vector \(q = 0.444(1) \) in the magnetic hyperfine field \(B_{hf} \). For each site, the isomer shift \(\delta \) and the quadrupole splitting value \(1/2\epsilon QV_z^\ast \) were fixed at values extrapolated from the high-temperature, paramagnetic spectra. The principal \(z \) axis of the electric-field gradient was assumed to align with the \(aN \) axis and the asymmetry parameter \(\eta \) was fixed at zero for the Fe1 site but allowed to vary for the less symmetric Fe2 site. Only the magnitudes and orientations (the polar angle \(\theta \) with respect to the principal \(z \) axis) of the individual \(B_{hf} \) were allowed to vary. Within each sextet, the Lorentzian linewidths were set at 0.3 mm/s and the relative line intensities were fixed at 3:2:1:1:2:3 as appropriate for random orientation of the specimen crystallites. The results
for the 5 K spectrum are presented diagrammatically in Fig. 9(b) where the magnitude, orientation, and thickness of the vectors represent the magnitude, polar angle θ, and intensity, respectively, of the subspectral B_{hf}. There is evidently a broad grouping of the B_{hf} into sets centered on $\theta \approx 0^\circ$, 60°, and 95° with B_{hf} ranging from 12 to 20 T (corresponding to Fe moments ranging from 2.4 to 4 μ_B). This points to the model (b) magnetic structure as the preferred incommensurate magnetic model. As discussed previously in the literature (for example by Colson et al. [26]), for an equal-moment helical or conical structure the magnetic sextets should all be fitted with the same (or at least very similar) B_{hf} values. Only the quadrupole interaction’s contribution would be expected to vary, in this case via the polar angle θ. The outcome would be a single magnetic sextet for each of the Fe1 and Fe2 sites, but with a characteristic line-dependent broadening. However, in the case of an additional variation in the local moment [such as the range of 3.3–4.0 μ_B found in model (b)] the spectra are expected to be more complex, approaching those for the elliptical helical structure described by Colson et al. (Fig. 3 of [26]).

F. $\mu^+\text{SR}$ spectra of β-Ce$_2$O$_2$FeSe$_2$

Representative zero field $\mu^+\text{SR}$ spectra measured on β-Ce$_2$O$_2$FeSe$_2$ are shown in Fig. 11. In spectra measured below $T = 85$ K oscillations in the asymmetry are observed. These oscillations are characteristic of a quasistatic local magnetic field at the muon stopping site, which causes a coherent precession of the spins of those muons with a component of their spin polarization perpendicular to this local field (expected to be 2/3 of the total polarization for a powder). The frequency of the oscillations is given by $\nu_i = \gamma_\mu B_i / 2\pi$, where γ_μ is the muon gyromagnetic ratio ($= 2\pi \times 135.5$ MHz T$^{-1}$) and B_i is the average magnitude of the local magnetic field at the ith muon site. Any fluctuation in magnitude of these local fields will result in a relaxation of the oscillating signal, described by a relaxation rate λ. The presence of oscillations at low temperatures provides unambiguous evidence that β-Ce$_2$O$_2$FeSe$_2$ is magnetically ordered throughout its bulk below 85 K.

The polarization spectra in the low temperature regime $T \leq 85$ K were found to be best fitted by the sum of two oscillating components with frequencies ν_1 and ν_2 and respective relaxation rates λ_1 and λ_2. The observation of two frequencies implies that muons stop at two magnetically distinct sites in the crystal. To model the data, we also require a third, purely exponential component with amplitude P_{bg} and small relaxation rate λ_{bg} which accounts for those muons with spin components parallel to the local magnetic field and those that are stopped in the sample holder or cryostat tails. We fit the data to the resulting function

$$P(t) = P_1 e^{-\lambda_1 t} \cos (2\pi \nu_1 t + \phi_1) + P_2 e^{-\lambda_2 t} \cos (2\pi \nu_2 t + \phi_2) + P_{bg} e^{-\lambda_{bg} t},$$

where $P(t) = A(t)/A_{max}$ [Eq. (1)], with A_{max} the maximum value of $A(t = 0)$ observed in the paramagnetic phase (see below). The phase offsets were found to be constant at $\phi_1 = -15.8^\circ$ and $\phi_2 = -19.5^\circ$. The amplitudes of the oscillatory components were found to be $P_1 = 0.13$ and $P_2 = 0.15$.

FIG. 12. (a) and (b) Results of fitting the $\mu^+\text{SR}$ spectra to Eq. (4) and (c) and (d) to Eq. (6). The line in (a) is a guide to the eye from Eq. (5).
implying that the two magnetically distinct muon sites are occupied with similar probability.

The results of fitting Eq. (4) to the measured data are shown in Figs. 12(a) and 12(b). We note that the two frequencies do not show an identical temperature dependence, and attempts to fit them in fixed proportion were unsuccessful. This might reflect a subtle change in the magnetic structure with temperature or, perhaps more likely, the difficulty in fitting the data consistently across a large temperature range in a case where the observed frequencies are large. The evolution of the relaxation rates \(\lambda_{1,2} \) [Fig. 12(b)] is also of possible significance and shows a local maximum at 10 K and the suggestion of a minimum around 40 K. The temperature evolution of the larger of the two frequencies [Fig. 12(a)] was fitted, close to the transition, to the phenomenological form

\[

v(t) = v(0) \left[1 - \frac{T}{T_N} \right]^{\beta}.

\]

Several parametrizations are possible, but from the fits we estimate \(T_N = 86 \pm 1 \) K and \(\beta \approx 0.25 \).

Above \(T_N \), the spectra show a monotonic decrease and demonstrate the system is in a magnetically disordered state with dynamic field fluctuations on the muon time scale. The data are most successfully fitted using the sum of two relaxing components with the function

\[

P(t) = P_3 e^{-\lambda_3 t} + P_1 e^{-\lambda_1 t} + P_{bg}.

\]

The results of fitting with relaxation rate \(\lambda_4 \gg \lambda_3 \), \(P_3 = 0.66 \), and \(P_1 = 0.32 \) are shown in Figs. 12(c) and 12(d). The small relaxation rate \(\lambda_3 \) shows a steady decrease with \(T \) but the larger relaxation rate \(\lambda_4 \) shows a distinct minimum around 150 K [Fig. 12(d)], close to the small feature seen in the magnetic susceptibility. This is possibly suggestive of the muon seeing a crossover between two different regimes of magnetic behavior, with distinct sets of relaxation process on either side (presumably corresponding to differences in dynamics, or the field distribution itself).

IV. DISCUSSION/CONCLUSIONS

In conclusion we have used a combination of x-ray and neutron diffraction techniques to investigate the nuclear and magnetic structures of \(\beta\text{-Ce}_2\text{O}_2\text{FeSe}_2 \) and used Mössbauer and \(\mu^+\text{SR} \) techniques to probe the temperature dependence of its magnetic order. There is clear evidence from single crystal x-ray diffraction that the structure is primitive rather than centered at room temperature. The systematic absences and the observation of second harmonic generation suggest space group \(Pnma_2 \). An excellent fit to both single crystal x-ray diffraction and powder x-ray and neutron diffraction data can be achieved with this space group. Variable temperature powder diffraction experiments show an order-disorder transition associated with the Fe2/Fe3 sites occurs at around 330 K.

Above this temperature Fe is statistically disordered over two closely separated face-sharing tetrahedral sites (thus appearing in a pseudotrigonal bipyramidal site). At room temperature 80% site ordering is achieved, and ordering is essentially complete below 230 K.

The structure of \(\beta\text{-Ce}_2\text{O}_2\text{FeSe}_2 \) contains chains of edge-shared \(\text{FeO}_2\text{Se}_2 \) distorted octahedra and corner-shared \(\text{Fe}_2\text{Se}_4 \) tetrahedra with the tetrahedral and octahedral chains linked by either edge or corner sharing. Below \(T_N = 86 \) K Fe sites order antiferromagnetically within each chain to give an incommensurately modulated magnetic structure with \(q = 0.444b\text{N}^* \), which can be approximate using a ninefold superstructure along the \(b \) axis. From a visual comparison of diffraction data, \(\beta\text{-La}_2\text{O}_2\text{FeSe}_2 \) [3] appears to have a similar magnetic structure. It is difficult to be definitive about the exchange interactions leading to this complex magnetic structure from the data available. Similar \(\text{Fe}_2\text{Se}_4 \) edge-sharing chains are observed in the \(\text{Ln}_2\text{O}_2\text{Fe}_2\text{OSe}_2 \) family of materials, though as part of infinite 2D layers made up of face-sharing octahedra. In these materials crystalline electric field anisotropy leads to a preference for Fe moments along Fe-O bonds [46] and moments are ordered ferromagnetically along each edge-shared chains [consistent with Goodenough-Kanamori-Anderson (GKA) predictions]. The exchange constants are, however, relatively weak and both Mn and Co analogs are found computationally and experimentally to violate GKA rules and have antiferromagnetic order along the chains [47–49]. In \(\beta\text{-Ce}_2\text{O}_2\text{FeSe}_2 \) the local magnetic structure is probably governed by strong Fe1-Te-Se-Fe2 ~165° antiferromagnetic exchange within the edge-shared Fe1Se4O2/Fe2Se4 double chains (see Fig. 1), consistent with GKA predictions. Interchain coupling is more complex and presumably gives rise to the frustration leading to the incommensurate structure, though we note that incommensurate order can be observed even in the geometrically simpler \(\text{Ln}_2\text{F}_2\text{Fe}_2\text{Se}_2 \) systems [50]. Mössbauer and \(\mu^+\text{SR} \) techniques have confirmed the low temperature magnetic order and suggest that the material has a modulated structure based on an elliptical proper screw. Both techniques suggest short range magnetic order is retained significantly above \(T_N \).

ACKNOWLEDGMENTS

We thank EPSRC for funding under EP/J011533/1 and EP/N024028/1. Powder diffraction data were collected on the Powder Diffraction beamline at the Australian synchrotron. We thank Ivana Evans, Matthew Tate, Nicola Scarlett, and Garry McIntyre for assistance with data collections. J.S.O.E. would like to thank ANSTO for a visiting position during which part of this research was performed. We thank Professor Shiv Halasyamani of the University of Houston for SHG measurements. We thank F. Kirschnler, H. Luetkens, and A. Amato for experimental assistance with \(\mu^+\text{SR} \) experiments. Data presented in this paper will be made available via Durham Collections.