We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

Jet activity as a probe of diphoton resonance production.

Harland-Lang, L. A. and Khoze, V. A. and Ryskin, M. G. and Spannowsky, M. (2016) 'Jet activity as a probe of diphoton resonance production.', European physical journal C., 76 . p. 623.


We explore the method of using the measured jet activity associated with a high-mass resonance state to determine the corresponding production modes. To demonstrate the potential of the approach, we consider the case of a resonance of mass MR decaying to a diphoton final state. We perform a Monte Carlo study, considering three mass points MR = 0.75, 1.5, 2.5 TeV, and show that the γ γ , W W, gg and light and heavy qq initiated cases lead to distinct predictions for the jet multiplicity distributions. As an example, we apply this result to the ATLAS search for resonances in diphoton events, using the 2015 data set of 3.2 fb−1 at √s = 13 TeV. Taking the spin-0 selection, we demonstrate that a dominantly gg-initiated signal hypothesis is mildly disfavoured, while the γ γ and light quark cases give good descriptions within the limited statistics, and a dominantly W W-initiated hypothesis is found to be in strong tension with the data. We also comment on the bb initial state, which can already be constrained by the measured b-jet multiplicity. Finally, we present expected exclusion limits with integrated luminosity, and demonstrate that with just a few 10s of fb−1 we can expect to constrain the production modes of such a resonance.

Item Type:Article
Full text:(VoR) Version of Record
Available under License - Creative Commons Attribution.
Download PDF
Publisher Web site:
Publisher statement:© The Author(s) 2016 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Date accepted:31 October 2016
Date deposited:06 October 2017
Date of first online publication:16 November 2016
Date first made open access:06 October 2017

Save or Share this output

Look up in GoogleScholar