Skip to main content

Research Repository

Advanced Search

Rapid ice unloading in the Fleming Glacier region, southern Antarctic Peninsula, and its effect on bedrock uplift rates

Zhao, C.; King, M.A.; Watson, C.; Barletta, V.R.; Bordoni, A.; Dell, M.; Whitehouse, P.

Rapid ice unloading in the Fleming Glacier region, southern Antarctic Peninsula, and its effect on bedrock uplift rates Thumbnail


Authors

C. Zhao

M.A. King

C. Watson

V.R. Barletta

A. Bordoni

M. Dell



Abstract

Rapid regional warming in the Antarctic Peninsula has led to the significant retreat and eventual collapse of several major ice shelves since the 1970s, triggering the subsequent acceleration and thinning of their feeding glaciers. The Wordie Ice Shelf, lying off the west coast of the Antarctic Peninsula, has undergone long-term disintegration since the 1960s with a substantial calving event occurring around 1989, followed by continuous steady retreat and its almost-complete disappearance. The dynamic response of the upstream glaciers to the ice shelf collapse and the response of the solid Earth to the associated mass loss are not fully understood. To quantify the mass loss from the system, we generated a digital elevation model (DEM) using airborne vertical and oblique imagery from 1966 and compared it to a DEM derived from 2008 SPOT data. This analysis reveals lowering over that time of approximately 60 m at the front of Fleming Glacier. Using IceBridge and ICESat-2/GLAS data spanning 2002–2014, we show an increased rate of mean ice-surface lowering, with rates post-2008 more than twice those of 2002–2008. We use these load change data as a basis for the simulation of viscoelastic solid Earth deformation. We subtract modeled elastic deformation rates, and a suite of modeled viscous rates, from GPS-derived three-dimensional bedrock velocities at sites to the south of Fleming Glacier to infer properties of Earth rheology. Assuming the pre-breakup bedrock uplift was positive due to post-Last Glacial Maximum (LGM) ice retreat, our viscoelastic-corrected GPS uplift rates suggest upper mantle viscosities are >2×1019Pas and likely >1×1020Pas in this region, 1–2 orders of magnitude greater than previously found for the northern Antarctic Peninsula. Horizontal velocities at the GPS site nearest the Fleming Glacier, after the application of elastic and plate tectonic corrections, point away from Marguerite Bay rather than the present glacier front. This suggests that horizontal motion in the region reflects the earlier retreat of the glacier system following the LGM, compatible with a relatively strong mantle in this region. These findings highlight the need for improved understanding of ice load changes in this region through the late Holocene in order to accurately model glacial isostatic adjustment.

Citation

Zhao, C., King, M., Watson, C., Barletta, V., Bordoni, A., Dell, M., & Whitehouse, P. (2017). Rapid ice unloading in the Fleming Glacier region, southern Antarctic Peninsula, and its effect on bedrock uplift rates. Earth and Planetary Science Letters, 473, 164-176. https://doi.org/10.1016/j.epsl.2017.06.002

Journal Article Type Article
Acceptance Date Jun 3, 2017
Online Publication Date Jul 4, 2017
Publication Date Sep 1, 2017
Deposit Date Oct 6, 2017
Publicly Available Date Mar 29, 2024
Journal Earth and Planetary Science Letters
Print ISSN 0012-821X
Publisher Elsevier
Peer Reviewed Peer Reviewed
Volume 473
Pages 164-176
DOI https://doi.org/10.1016/j.epsl.2017.06.002

Files





You might also like



Downloadable Citations