We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

Stable strontium isotopic heterogeneity in the solar system from double-spike data.

Charlier, B.L.A. and Parkinson, I.J. and Burton, K.W. and Grady, M.M. and Wilson, C.J.N. and Smith, E.G.C. (2017) 'Stable strontium isotopic heterogeneity in the solar system from double-spike data.', Geochemical perspectives letters., 4 . pp. 35-40.


Strontium isotopic anomalies in meteorites are important in assessing nucleosynthetic sources to, and measuring the timing of, early solar system processes. However, conventional use of a constant 88Sr/86Sr value in correcting for instrumental mass fractionation during analysis renders measurements ambiguous and removes information on mass-dependent fractionation variations. From double-spike techniques we obtain data for the four stable strontium isotopes free of this ambiguity, and report measurements from a range of meteoritic, lunar and terrestrial materials. The Earth, Moon, basaltic eucrites and feldspars from angrites (differentiated samples) follow a single mass-dependent fractionation line and have a common nucleosynthetic origin in terms of their strontium isotopes. In contrast, bulk rock CI, CV3, CM and CO chondrite samples serve to define another mass-dependent fractionation line, displaced by 94 ± 28 ppm to heavier 84Sr/86Sr and/or 88Sr/86Sr ratios than that for the differentiated samples. Our Sr-isotopic data are consistent with a primary contrast in early solar system composition between an outer zone of primitive, mostly undifferentiated, materials and an inner zone of (almost entirely) differentiated materials that accumulated to form the terrestrial planets.

Item Type:Article
Full text:(AM) Accepted Manuscript
Download PDF
Full text:(VoR) Version of Record
Download PDF
Publisher Web site:
Date accepted:04 August 2017
Date deposited:17 October 2017
Date of first online publication:15 September 2017
Date first made open access:15 November 2017

Save or Share this output

Look up in GoogleScholar