We use cookies to ensure that we give you the best experience on our website. By continuing to browse this repository, you give consent for essential cookies to be used. You can read more about our Privacy and Cookie Policy.

Durham Research Online
You are in:

Bayes linear analysis of imprecision in computer models, with application to understanding galaxy formation.

Vernon, Ian R. and Goldstein, M. (2009) 'Bayes linear analysis of imprecision in computer models, with application to understanding galaxy formation.', in Proceedings of the Sixth International Symposium on Imprecise Probability: Theories and Applications. , pp. 441-450.


Imprecision arises naturally in the context of computer models and their relation to reality. An imprecise treatment of general computer models is presented, illustrated with an analysis of a complex galaxy formation simulation known as Galform. The analysis involves several different types of uncertainty, one of which (the Model Discrepancy) comes directly from expert elicitation regarding the deficiencies of the model. The Model Discrepancy is therefore treated within an Imprecise framework to reflect more accurately the beliefs of the expert concerning the discrepancy between the model and reality. Due to the conceptual complexity and computationally intensive nature of such a Bayesian imprecise uncertainty analysis, Bayes Linear Methodology is employed which requires consideration of only expectations and variances of all uncertain quantities. Therefore incorporating an Imprecise treatment within a Bayes Linear analysis is shown to be relatively straightforward. The impact of an imprecise assessment on the input space of the model is determined through the use of an Implausibility measure.

Item Type:Book chapter
Keywords:Bayesian Inference, Computer models, Calibration, Imprecise model discrepancy, Implausibility, Galaxy Formation, Graphical Representation of Model Imprecision.
Full text:(AM) Accepted Manuscript
Download PDF
Publisher Web site:
Date accepted:No date available
Date deposited:20 October 2017
Date of first online publication:July 2009
Date first made open access:No date available

Save or Share this output

Look up in GoogleScholar